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Figure 1: 3D expression map of c-Fos gene in an adult mouse brain, before and after subsurface �uorescence removal (fragment,
iso-surface rendering); inset: 2D sections.

Abstract
Acquisition, transfer, registration and processing of 3D im-
ages of biological objects are all complex procedures that
tend to introduce various artifacts, reducing the resolution
of the imaging techniques. One such technique is block-
face imaging, which su�ers greatly from subsurface �uores-
cence. Removal of this type of artifacts can be reformulated
as a deconvolution problem. Although several classic and
specialized algorithms have been succesfully applied to this
problem, they only work for relatively low amount of blur,
sparsely distributed objects and predetermined convolution
kernel. Following recent advances in deblurring of 2D nat-
ural images, we propose a new Expectation-Minimization
algorithm approximating the maximum a posteriori proba-
bility solution. The algorithm is not limited to the case of
�xed kernel, but can also work with partially known (para-
metric) or totally unknown kernels. We test the algorithm
on model and real data.
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1 INTRODUCTION
The last few years saw rapid development of 3D cryogenic
block-face imaging methods. New methods of scanning com-
bined with modern capabilities of visualization techniques
allowed researchers to measure and analyze cell-level activ-
ity on the scale of the whole brain or even the whole organ-
ism [Roy et al. 2010]. These methods can be used in many
applications including stem cell therapy, metastatic cancer
treatment, gene expression mapping and phenotyping of lab-
oratory animals [Krishnamurthi et al. 2010].
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While it became easier to obtain high-resolution 3D vol-
umetric data, certain imaging artifacts can signi�cantly re-
duce the resolving power of the technique. For block-face
imaging of �uorescent proteins, the biggest problem is sub-
surface �uorescence and scattering of light. E�ectively a
type of blur, it is generally modeled as convolution with a
point spread function (PSF):

I = L⊗ f + n. (1)

Here we used the following notation:

• I � observed blurred image;

• L � clear latent image we want to �nd;

• f � kernel (PSF), could be known (non-blind deconvo-
lution) or not (blind deconvolution);

• n � additive noise, some of its properties are usually
known.

Point spread function describes the response of an imaging
system to a point source or point object. PSF is usually
assumed to be shift-invariant (every voxel is convolved with
the same kernel). Such assumption is widely used in practice
because it leads to more stable and e�cient algorithms. We
will follow this assumption, but for many practical cases it
is not su�ciently adequate and should be utilized with care.
Note that equation 1 is a Fredholm integral equation of

the �rst kind. It is an ill-posed problem, and some prior
knowledge is needed to regularize it.

2 METHODS OVERVIEW
3D deconvolution necessarily involves processing huge
amounts of data, which places strong constraints on the



methods' computational demands. This has led to a wide
usage of simple (and thus computationally cheap) methods.
So far, the research has been focused on non-blind decon-

volution. Same as in 2D, the most commonly used meth-
ods are Richardson-Lucy algorithm and Wiener �lter [Kr-
ishnamurthi et al. 2010]. Additionaly, a new cryo-imaging
oriented Next-image algorithm was proposed [Steyer et al.
2009].
Wiener �ltering is a well-known approach to deconvolu-

tion of noisy images coming from signal processing theory
[Gonzalez and Woods 2006]. It works in the frequency do-
main of equation 1, attempting to minimize the impact of
deconvoluted noise at frequencies which have a poor signal-
to-noise ratio. It is a non-iterative algorithm, implementing
an expicit formula.
The Richardson-Lucy algorithm (also known as Lucy-

Richardson deconvolution) is an iterative procedure recov-
ering original image under the assumption that the noise is
Poisson-distributed [Richardson 1972], [Lucy 1974]. It has
been shown that if this algorithm converges, it converges to
the maximum likelihood solution.
Next-image algorithm avoids solving deconvolution prob-

lem altogether, turning instead to modeling light propaga-
tion in tissue directly [Steyer et al. 2009]. Using a crude
approximation and a set of physically measured or semi-
automatically estimated parameters, the derived scheme is
very simple. It essentially boils down to going through the
data, blurring each layer to estimate its contribution to sub-
surface �uorescence, and subtracting it from the consequtive
layers.
While data volume for 3D problems seems to limit the

complexity of applicable algorithms, we argue that it can
still be handled by more general approaches. For most ap-
plications, one can use much more rigid kernel priors than in
2D; furthemore, PSF is often known up to a low-dimensional
set of parameters. This can be utilized to make the problem
tractable by the more complex mordern MAP-algorithms.

3 PROPOSED ALGORITHM
3D deconvolution is a challenging problem and thus recieved
modest development. Meanwhile, methods for 2D image de-
blurring were developing rapidly during the last decade. Ex-
ponential growth of the available computational power seems
to have led to the current capabilities of computers being
high enough so that we can apply more e�cient deblurring
techniques from this closely related �eld of research.
We will combine and adapt several modern approaches

to 2D deconvolution to construct a 3D blind deconvolution
algorithm.

3.1 Blind deconvolution method
Many modern 2D blind deconvolution algorithms are based
on approximating maximum aposteriori probability (MAP)
solution:

(L, f) = arg max log p(L, f |I). (2)

While applying MAP framework, one must construct
probabilistic model for the process of image convolution:

p(L, f |I) ∝ p(I|L, f)p(L)p(f). (3)

Each factor in the right part of the model should be chosen
with great care, and many variations have been proposed.
Very little is known about about appropriate priors for 3D
images, so we based our model on some of the more robust
2D priors.

Once the model is �xed, the problem of blind deconvolu-
tion is solved by an iterative EM-like procedure. Before the
�rst iteration, PSF is initialized with some realistic values.
Then, we alternate between these two steps till convergence:

• Fix kernel f and solve non-blind deconvolution problem:

(Lnew|f) = arg max log p(L|f , I). (4)

• Fix latent image estimate L and update kernel f :

(fnew|L) = arg max log p(f |L, I). (5)

3.2 Estimation of the latent image
To calculate optimal clear image Lnew according to sug-
gested model, we must choose each factor in the probability
model. Basically, we use the approach of [Shan et al. 2008]
with the exception of the kernel prior. To simplify the op-
timization process, following [Cho and Lee 2009], we opted
for L2 regularization instead of L1.
By taking the negative logarithm of the aposteriori prob-

ability p(L, f |I), we restate the probability maximization
problem as an energy minimization problem, de�ning en-
ergy E(L, f) = − log p(L, f |I). Thus, the appropriate target
function can be formulated as follows:

E(L, f) ∝
( ∑
∂∗∈Θ

wκ(∂∗)‖∂∗L⊗ f − ∂∗I‖22

)
+

+
∑

ν∈{x,y,z}
λ1‖Φ(∂νL)‖1+

+λ2

(
‖∂νL− ∂νI‖22 ◦M

)
+ ‖f‖2.

(6)

Here M = {mi} is an estimate of the local smooth-
ness map with ◦ denoting masking (element-wise multipli-
cation); Θ is the set of partial derivative operators: Θ =
{∂0, ∂x, ∂y, ∂z, ∂xx, ∂xy, ∂xz, ∂yy, ∂yz, ∂zz, }, where ∂0 returns
pixel intensities of an image: ∂0I = I. Θ is used to reg-
ularize the mismatch between the observed blurred image
(I) and estimated latent image convolved with PSF (L⊗ f).
Using second order derivatives was proposed by [Shan et al.
2008] as a means to improve the robustness of the algorithm.
Φ is a function speci�cally designed to penalize unrealistic
distribution of gradients in the estimated image.
Even after signi�cant simpli�cation, target function of

equation 6 is still highly non-convex and has thousands to
millions of variables. In order to optimize it e�ciently, au-
thors of [Shan et al. 2008] propose a variable substitution
scheme as well as an iterative parameter re-weighting tech-
nique. The basic idea is to separate the complex convolu-
tions from other terms so that they can be computed using
Fourier transform. Transferring the approach to 3D, we get
the following two-step scheme for the inner iteration process
of computing the new estimate Lnew:

• Fix Lnew (initialize it with I before the �rst iteration)
and �nd the pseudogradients Ψ = {ψi} of Lnew that
minimize energy:

E
′
ψi,ν

= λ1|Φ(ψi,ν)|+ λ2mi(ψi,ν)−
−∂νI2

i + γ(ψi,ν−∂νL
2
i ).

(7)

This energy can be optimized very fast, independently for
each pixel i and for each partial derivative ∂ν ∈ ∂{x, y, z}.

• Fix the gradient estimation Ψ and update the latent
image Lnew:
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Figure 2: Excluding intensities from the energy improves the
optimization convergence.

Lnew =

= F−1

F(f)◦F(I)◦∆+γ
∑

ν∈{x,y,z}

F(∂ν)◦F(Ψν)

F(f)◦F(f)◦∆+γ
∑

ν∈{x,y,z}

F(∂ν)◦F(∂ν)

 .
(8)

Here F ,F−1 denote direct and inverse Fourier transform,

respectively. ∆ =
∑

∂∗∈Θ
wκ(∂∗)F(∂∗)◦F(∂∗), and (·) is the

complex conjugate operator. Division is performed element-
wise.

3.3 Estimation of the kernel
We consider two types of convolution kernels � PSF with a
sparsity prior only (commonly used in 2D deblurring), and
a parametric set of kernels � cheaper and more robust ap-
proach.

3.3.1 Unconstrained PSF

Method used in [Shan et al. 2008] for kernel estimation
(based on the interior point method) is extremely slow, and
even for 2D images it su�ers from memory overhead. Con-
sequently, we decided to use the approach of [Cho and Lee
2009], that is much more e�cient.
When L is �xed, energy in eq. 6 is simpli�ed:

E(f) ∝
(∑
∂∗∈Θ

wκ(∂∗)‖∂∗L⊗ f − ∂∗I‖22

)
+ ‖f‖2; (9)

Optimization of this energy is a quadratic programming
problem:

( ∑
∂∗∈Θ

wκ(∂∗)||∂∗L⊗ f − ∂∗I||2
)

+ ||f ||2 → max
f

fi ≥ 0∑
i

fi = 1

(10)

If we relax the problem, ignoring constrains on f , we can
�nd solution analytically, using Fourier transforms. Doing
so would require inverting the corresponding matrix, which
in this case is a computationally expensive and unrobust
operation. Instead, following [Cho and Lee 2009], we employ

conjugate gradients (CG) method to optimize 9. Recent
analysis in [Levin et al. 2009; Levin et al. 2011] also indicates
the energy in eq. 9 should be further simpli�ed by excluding

pixel intensities, Θ → Θ
′

= Θ \ ∂0. It leads to a signi�cant
improvement of conjugate gradients convergence speed and,
at the same time, produces a more robust solution (for what
is a typical example for our experiments, see �g. 2).
As convolution for two signals (p×p and q×q) is equivalent

to multiplication of two matrices (p2 × q2 and q2 × 1), the
problem can be rewritten in matrix form. Denoting matrix
corresponding to the sum in 10 by A, we get the following
functional to be minimized at each iteration of CG:

Ek(f) = ||Af − b||2 + β||f ||2 =
= (Af − b)T (Af − b) + βfT f ;

(11)

To use the CG method, we also need to compute the gra-
dient of Ek(f):

dEk(f)

df
= 2ATAf + 2βf − 2AT b; (12)

In general, our optimization procedure produces an un-
normalized solution with negative values. So, after the op-
timization process is �nished, we set the small values in the
kernel to zero (to be precise, those smaller than 1

20
of the

biggest one); the remaining elements are normalized so that
their sum is equal to one.
As CG can not guarantee convergence to the global opti-

mum, the optimization is done in a pyramidal coarse-to-�ne
manner [Cho and Lee 2009].

3.3.2 Parametric PSF

Now, let's assume the PSF can be parameterized by a small
set of variables, f = f(θ). While the energy can still be com-
puted using eq. 11, the equation for the gradient changes
somewhat:

dEk(f)

dθ
= 2ATAf

df

dθ
+ 2βf

df

dθ
− 2AT b

df

dθ
; (13)

E�ectively, this constitutes a more robust procedure, since
the dimensionality of the problem is tipically much lower
and, even more importantly, the kernel is guaranteed to be
normalized and have no negative elements.

3.4 Implementation details
We have implemented the algorithms described in previous
section for both 2D and 3D using MATLAB. The implemen-
tation was evaluated on model data and real images. The
�rst part of the proposed method is non-blind deconvolution,
so we used the standard MATLAB algorithms for evaluation.
Also, we tried two di�erent con�gurations of coarse-to-�ne

pyramid: 1) to downsample both the kernel and the images,
and 2) to downsample the kernel only (while applying con-
jugate gradients). The second method is simpler, but the
�rst one often produces a better solution, especially for the
coarsest approximations.
Note that working with the downsampled images demands

an appropriate scaling of the non-blind algorithm's param-
eters (otherwise, signi�cant artifacts in early levels of the
pyramid will result in a grossly suboptimal solution).

4 EXPERIMENTAL RESULTS
We have tested our algorithm on model and real data.
The model 3D scene consists of numerous tightly packed

small spheres. Each sphere is a dense intensity source, with
luminocity peaking in the center and falling to about half



of that towards the edges. Positions and densities of the
spheres are sampled from a normal distribution. Fig. 3
(upper left) shows an example of our model scene.
In our experiments, we used a simple kernel parametriza-

tion, a gaussian multiplied by a hyperbola. This PSF that
can be scaled in each dimension (and it �ts well with our
real data):

fi,j,k(h,w, d) =
h− k
h
∗ N ([w, d]T ,

w

5
); (14)

The only parameters are {h,w, d} � height, width and
depth of the kernel, accordingly. The PSF has a paraboloid-
like shape, with most of the density concentrated around
the axis. Example of our PSF can be seen on �g. 3 (upper
right).
After applying the convolution, many of the spheres stick

together and cease to be discrete objects. This replicates the
e�ect subsurface �uorescence has on block-face imaging: in-
dividual cells can no longer be easily discerned as such, thus
decrising the resolution (resolving power) of the technique.
Fig.3 (lower left) shows the model scene after applying con-
volution with the kernel.
Fig.3 (lower right) shows the output of the proposed non-

blind deconvolution method. Even the more closely seeded
spheres have been been succesfully separated. The estima-
tion of the densities is also pretty close to the original.
Fig.4 compares the result of non-blind and fully blind

(no kernel parameterization information) deconvolution
schemes. The source image and the kernel used for blur
are the same in both cases. Note that although the recon-
structed shapes are very similar, non-blind deconvolution
did a much better job at estimating densities.
When parameters of the kernel are taken into account,

blind deconvolution algorithm �nds a good estimate for the
PSF in just a few steps of CG. For the model data, the results
are visually indistinguishable from those of non-blind de-
convoluton (because of the space limitations, we omit them
here).
Fig.1 shows an iso-surface rendering of a fragment of a

3D map of c-Fos expression in an adult mouse brain, before
and after subsurface �uorescence removal procedure; inset
are 2D section of the same data. Kernel parameterization is
the same as above. The proposed method clearly results in
a signi�cant improval of the quality of the scan.
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