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Abstract 

This paper discusses the method of calibration maintenance for 

four camera acquisition system (the mentioned system will be 

referenced as the 3D system in this paper). 3D system creates 3D 

models of human faces. The relative orientation between two 

vertical stereo pairs could slowly change in time because of a 

vibration. Thus camera calibration needs to be maintained.        

We show how 3D system can maintain calibration without being 

stopped. The new calibration parameters are being continuously 

recalculated from new multiple dynamic scene images and 

previous calibration.  

Keywords: Camera calibration, Stereo, Essential parameters 

estimation. 

1. INTRODUCTION 

3D system consists of four cameras that have to be calibrated 

(Fig.1). The cameras are synchronized. 

 
Figure 1: Four camera 3D acquisition system. 

Four cameras are coupled in two vertical stereo pairs. Two 

cameras in each pair are mounted at the common stable basis and 

have constant orientation in respect to each other.  

We had observed that 3D system with two stereo pair is much 

superior in respect to one that has only one stereo pair. Each 

stereo pair recovers only its half of the face. Taken from left and 

right sides the face is fully recovered under wide angle of rotation. 

Coupling left and right vertical stereo together however puts 

another problem: the relative orientation between two vertical 

stereo pairs may have small alteration because of the vibration of 

constructive elements which position stereo pairs in space. Thus 

3D models of human faces will have alteration in time. In Fig.2 

we present a 3D model of human face before the calibration has 

been changed. In Fig.3 we present a 3D model of same human 

face after the calibration has been slightly changed.  In Fig.3 the 

face is distorted obviously: nose becomes shorter. 

 The classical camera calibration [4, 5] is performed by capturing 

a reference object with a known Euclidean structure (for example, 

chessboard pattern). This approach can be reasonably used on 

stages when 3D system is stopped. On those stages 3D system 

cannot create 3D models of human faces. But 3D system cannot 

be stopped every time we want to find out if calibration has 

changed considerably or not. There are also severe conditions in 

which human traffic may exist all day and night, thus the face 

recognition system has to operate without break (i.e. at airports).  

 
Figure 2: 3D model of human face before camera calibration has 

been changed 

 
Figure 2: 3D model of human face after camera calibration has 

been changed (the shape of nose gets a distortion) 



A question arises:

from dynamic scene images and previous calibration?

We use the following features of the mentioned problem: cameras 

in pairs keep relative orientation, the observed scene is dynamic.
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correspondences we can determine  :. 2 ,  30;, where  2 are 

pixel coordinates of  �2 on the image of top camera from one pair,   3 are coordinates of �3 on the image of top camera from the 

other pair.  

Thus we have two sets of matched 3D points and matched pixel 

correspondences that are taken by two cameras from the different 

pairs. 

3.3 Estimate the essential parameters with 8-
point algorithm on step 5 

Due to the presence of incorrect correspondences (outliers), 

essential parameters estimators must be robust. The Random 

Sample Consensus – RANSAC methods [1] have become the 

methods of choice for outlier removal in essential parameters 

estimation [2].  We use RANSAC-like techniques on step 5. We 

start by selecting (at random) a subset of k correspondences, 

which is then used to compute the essential parameters estimation. 

The cost function of the full set of correspondences is then 

computed. The cost function expresses numbers of inliers that are 

within a certain neighborhood form their predicted epipolar lines. 

The random selection process is repeated S times, and the sample 

set with largest number of inliers is kept as the final solution.  

Assuming that the set of correspondences may contain up to a 

portion ε of outliers, the probability that one of S samples is good 

is given by P 	 1 � .1 � .1 � ε0B0C. In our implementation, we 

determine ε 	 25%, k = 35, P =0.999, thus S=200000. The 

algorithm can be speed up considerably by means of CUDA 

technology. 

The standard 8-point algorithm [3] is used to estimate the essential 

matrix. 

3.4 Refine the displacement parameters on the 
step 6 

The nonlinear minimization on step 6 is done with the Levenberg-

Marquardt algorithm. The criterion being minimized is the sum of 

squared reprojection errors. The Levenberg-Marquardt algorithm 

is one of the most popular methods for iterative minimization, 

when cost function to be minimized is of this type [2]. The 

optimization is carried out for all displacement parameters.  

In Fig.6 we present a 3D model of the same human face after  

calibration has been recovered. In Fig.6 a shape of the face is 

recovered: nose gets former shape. 

4. CONCLUSION 

In this paper we have used a general scheme of displacement 

estimation from multiple calibrated images [2, 3, 6] in the field of 

a four camera acquisition system.  

Steps 1, 2, 3, 4 of our algorithm were developed specifically for 

our field of investigation and we haven’t found any references to 

such methods implementation in literature.   

3D system has to be accurately calibrated. But 3D system has not 

to be stopped every time when we want to do calibration 

procedure with reference object with a known Euclidean structure. 

Due to the scene being dynamic we have matched points from 

cameras that fill the observed scene fairly uniformly.   

 

 
 Figure 6: 3D model of human face after camera calibration has 

been recovered ( nose gets former shape) 

The new camera calibration can be obtained from dynamic scene 

images and previous calibration. Our experimental results suggest 

that our method can be applied when displacement alteration is 

rather small. Experience has shown that it was enough to run our 

algorithm once at the middle of the day. Nevertheless classical 

camera calibration must be done as soon as 3D system may have a 

break in its work (for example, at the end of the day or before a 

new day).      
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