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Abstract 

Rank algorithms for εV and KNV neighborhood average calculat-
ing are used seldom due to their computational complexity. In this 
paper fast versions of these algorithms have been proposed. They 
are based on multiscale histograms. Also the impulse noise sup-
pression method is proposed. 
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1. INTRODUCTION 

The main problem of rank algorithms [5] is their computational 
complexity, thus only median filtering and maximum/minimum 
elements search are widely spread in practical applications. Rank 
algorithms do not blur the edges of objects and fit good for the 
impulse noise suppression. The approach based on use, maintain-
ing and updating of histograms [2] lets to decrease median filter-
ing complexity from O(r2 log r) to O(r), where r is a neighbor-
hood radius. One of the latest works in this area describes the 
algorithm [3] which lets to decrease histogram updating complex-
ity to O(1) during an image processing. However, the approach 
[3] has maximum performance only for square neighborhood area 
and does not provide any optimization of median calculation 
process.  

This work considers algorithms for fast calculation of εV and 
KNV neighborhood average and fast search of arbitrary element 
in a rank series. For histogram construction and updating both [2] 
or [3] approaches may be used.  

2. MULTISCALE HISTOGRAMS 

The highest and the roughest level L0 of multiscale histogram (see 
Figure 1) contains the total number of points in current pixel’s 
local neighborhood and the sum of their brightness (the interval 
from 0 to Imax, the maximum intensity of the image). The next 
lower level (L1) of histogram contains the same information for 2 
sections in the intensity range (0 to Imax/2 and from the Imax/2+1 to 
Imax), at the level of L2 - for 4 sections. In other words every ele-
ment of higher level includes two corresponding elements of low-
er level.  

The lowest level is the usual histogram where each element corre-
sponds to one intensity value. This level of histogram contains the 
number of pixels in the neighborhood with corresponding bright-
ness values. The number of this level coincides with the number 
of bits that represents the image intensity (Lmax).  

Let us consider the histogram element v0 on the L3 level and its 
neighborhood (element hL3[3], see Figure 1). The absolute differ-
ence between the remote from v0 tail of hL3[3] element and v0 posi-
tion on Lmax level will be called the distance from the neighbor-
hood to the adjacent left or right element. For example distance 

from hL3[3] to hL3[2] equals 13-8 = 5, from hL3[3] to hL3[4] equals 
19-13 = 6. Left or right element, which distance from the 
neighborhood is minimal will be called the closest element. 

During the histogram construction process for the current pixel, 
counter in the appropriate cell on each level of the multiscale 
histogram is incremented or decremented. Thus, for grayscale 
images with 256 shades of gray 8 histogram levels should be up-
dated simultaneously, i.e. the complexity of the histogram con-
struction process increases 8 times. However, various mean val-
ues might be computed with logarithmic complexity (8) instead of 
linear (256) in the number of 256 intensity gradations. Accelera-
tion is especially notable in the calculation of complex expres-
sions [5], for example average (εV(med(KNV(v0))). 

 

Figure 1: Multiscale histogram. 

3. εV NEIGHBORHOOD 

Let us introduce some useful definitions: the rank series {v(r)} is 
a one-dimensional sequence of N pixels of the neighborhood 
whose elements are sorted in ascending order with respect to their 
values: {v(r): v(r) ≤ v(r+1), r=0,1,..N-1}. Pixel v0 rank R is the 
number of the element in the rank series.  

Definition 1. εV neighborhood is a subset of pixels {v(r)} whose 
values deviate from the value of the central pixel v0 at most by 
predetermined quantities -ε and +ε: 
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εV neighborhood average calculation is a simplified analogue of 
bilateral filter [4]. Bilateral filtering has high computational com-
plexity and fast algorithms give only approximate results. The 
following method is proposed for mean value calculation in εV 
neighborhood: 

Algorithm 1. εV neighborhood average. 
Input: ε – value of epsilon parameter; 

v0 – intensity of the current pixel; 

vL := v0 − ε; 

vR := v0 + ε; 

Li := Lmax – level number; 

n = 0 – number of elements in summation; 

s = 0 – sum of histogram elements; 
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h – histogram vector; 

Output: average(vL; vR; s; n; Li); 

1: if vR is even then 

2:  s := s + hLi [vR] · vR; 

3:  n := n + hLi [vR ]; 

4:  vR := vR - 1; 

5: if vL is odd then 

6:  s := s + hLi [vL] · vL; 

7:  n := n + hLi [vL]; 

8:  vL := vL + 1; 

9: if (vL < vR) then 

10:  average(vL/2; vR/2; s; Li-1) 

11: else 

12:  average value is calculated: average := s/n; 

First, equidistant segment borders (vL and vR) are calculated for 
the center point on the most detailed level of the histogram. Then, 
while vL < vR, algorithm recursively shifts to a higher level. After 
shift the borders are rounded to the next power of two. For the 
current level summation involves only the segments that fall un-
der the rounding on each side of the current section. 

Thus, number of operations for mean calculation in the local 
neighborhood of current pixel (for arbitrary central element v0 and 
ε value) will not exceed 2*7 additions and comparisons, and one 
division for an image in 256 shades of gray. I.e. the proposed 
algorithm has the logarithmic complexity of O(Lmax) rather than 
linear complexity of O(2Lmax). Independence on the choice of v0 
means that the entire class of algorithms for εV neighborhood 
average calculating [5] is implemented and the central element 
may be the current pixel, or the mean value or the median value, 
etc. 

4. KNV - NEIGHBORHOOD 

Definition 2. KNV-neighborhood is a subset of a specified number 
K of pixels {vn,m} whose values are nearest to the value of the 
central pixel v0: 
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Considered above algorithm for εV neighborhood average has a 
disadvantage, connected with the problem of right ε choice (it is 
also a problem for bilateral filtering). The value of ε should de-
pend on image content and must be calculated or set considering a 
priori image information. Moreover, a single ε value choice for 
the entire image can be impossible. Therefore algorithms with a 
priori clear parameter values are of great interest. Particularly – 
the algorithm for KNV neighborhood average is among them. 

From the definition it is clear that, for example, angles of objects 
≥ 90º will not be rounded off in the case of two-color image with 
parameter K = ¼ N; with parameter K = ⅛ N angles less sharp 
than 45º will not be rounded either. Such a priori clear depend-
ence of the results of algorithm work on its parameter makes it 
applicable for use, even considering its higher complexity.  

Algorithm 2. KNV neighborhood average. 
Input: k – value of K parameter; 

v0 – the intensity of the current pixel; 

vL, vR – left and right borders of summing range; 

Li – the number of the level, where hLi+1[v0] > K; 

n = 3 – the number of elements, which is necessary to add on a 
considering histogram level; 

s = 0 – sum of histogram elements; 

h – histogram vector; 

Output: average_KNV(v0,vL,vR,k,s,n,L) 

1: if   v0 – (vL · 2Lmax – L)) > ((vR + 1) · 2 Lmax – L - 1)  - v0     then 

2: if  hL[vR] < k    then 

3:  s := s + hL[vR] · vR; 

4:  k := k - hL[vR]; 

5:  vR := vR + 1; 

6:  n := n - 1; 

7: else if  n ≠ 2  

8:  s := s - hL[vL] · vL; 

9:  k := k + hL[vL]; 

10:  vL := vL + 1; 

11:  n = 0; 

12: else 

13: if   hL[vL] < k    then 

14:  s := s + hL[vL] · vL; 

15:  k := k - hL[vL]; 

16:  vL := vL - 1; 

17:  n := n - 1; 

18: else if   n ≠ 2  

19:  s := s - hL[vR] · vR; 

20:  k := k + hL[vR]; 

21:  vR := vR – 1; 

22:  n = 0; 

23: if n ≠ 0 

24: average_KNV (v0,vL,vR,k,s,n,L); 

25: else 

26: average_KNV (v0,vL · 2,vR · 2,k,s,3,L+1); 

First the roughest level, containing the number of elements not 
greater than K, is searched starting with the most detailed level 
(Lmax). Initial sum is the element of this level, which contains the 
central pixel of the neighborhood (v0). It is proposed to add not 
more than 3 closest to v0 elements at each level. If adding one of 
these elements results that an intermediate sum will contain more 
than K counts, n=3 or n=1, the opposite border element is sub-
tracted from the sum and step to the lower level is performed. 
This step allows keeping the symmetry of the neighborhood. At 
the most detailed level (Lmax) a single, closest to the center, ele-
ment is added first. After this step, the neighborhood becomes 
completely symmetrical. In order to keep exactly K elements in 
the resulted sum it is necessary to add no more than 2 border ele-
ments from each side. 

Lemma 1. Proposed algorithm allows constructing symmetrical 
neighborhood. 



Proof. Let L0 represent the level, at which the first element hL0[i] 
was added, it contains v0 – the central pixel of the neighborhood. 
The L0 also contains odd number (1) of elements. 

Let us propose that, the neighborhood contains odd number M of 
elements on the level L0, the central element of the neighborhood 
contains v0. Then, at the level of L0+1 the neighborhood contains 
2M corresponding elements (because of a histogram construction, 
see Figure 1.). Three nearest (see Chapter 2) elements, which are 
not yet included into the neighborhood, will be added by turn. Let 
us consider 2 cases. 

1) Let addition the first item failed. Then the opposite extreme 
element is excluded from the neighborhood. In that case the dis-
tance between left and right borders of the neighborhood will 
differ by no more than the size of one element (see Chapter 2) of 
the level of L0+1 of histogram.  

2) Let addition the first item succeeded. The neighborhood will be 
more symmetrical after adding the first element on current level, 
because the element was added from the border where the dis-
tance from that border to v0 is minimal.  

The addition of the second element. 

1) Let the addition of the second element failed. Then the level 
handling is over. 

2) Let addition the second element succeeded. Then the procedure 
of addition of the third element is similar to the procedure of addi-
tion of the first element. 

Thus, on the level of L0+1 the neighborhood contains the odd 
number of elements, and the central element of the neighborhood 
contains v0. Then the distance between left and right borders of 
the neighborhood differs by no more than the size of one element 
of the level of L0+1 of histogram. 

Finally, because of the principle of mathematical induction, all 
the levels from L0 to Lmax contain the odd number of elements, the 
central element of each level contains v0 and the dissymmetry of 
the neighborhood is lesser than the size of the element on each 
level. Addition of the nearest element on the level of Lmax guaran-
tees that the neighborhood will be symmetrical. 

Lemma 2. The algorithm guarantees that the neighborhood will 
contain less than K elements for any L ≥ L0. Addition of one ele-
ment on the right and on the left sides guarantees that the neigh-
borhood will contain not less than K elements. 

Proof. Let L0 represent the level, at which the first element hL0[i] 
was added, it contains v0 – the central pixel of the neighborhood. 
The L0 also contains odd number (1) of elements. Then the 
neighborhood will contain ≥ K counts with nearest left and right 
elements. 

Let us assume that the histogram contains the odd number of ele-
ments on the level of L0, the central element of the neighborhood 
contains v0. Then, at the level of L0+1 the neighborhood contains 
2M corresponding elements (because of a histogram construction 
Img.1.). Three nearest elements (see Chapter 2), which are not yet 
included into the neighborhood, will be added by turn. Let us 
consider 2 cases. 

1) Let addition the first item failed. Then the opposite extreme 
element is excluded from the neighborhood. In that case the num-
ber of counts in the neighborhood will be < K. But the neighbor-
hood will contain ≥ K counts with nearest left and right elements. 

2) Let addition the first item succeeded. Then the neighborhood 
contains < K counts.  

The addition of the second element. 

1) Let the addition of the second element failed. Then the level 
handling is over. In that case the neighborhood will contain ≥ K 
counts with nearest left and right elements. 

2) Let addition the second element succeeded. Then the procedure 
of addition of the third element is similar to the procedure of addi-
tion of the first element. 

Thus, the neighborhood contains ≥ K counts with nearest left and 
right elements on each level from L0 to Lmax. If one more element 
from each border of the neighborhood is considered together with 
previous 3 elements on the level of Lmax (in all 5 elements on the 
level) then neighborhood will be guaranteed to contain ≥ K 
counts.  

Algorithm 2 may go beyond the borders of the histogram vector 
while adding or subtracting elements on each level of the histo-
gram. To avoid the growth of difficulty because of permanent 
index checks, it is proposed to supplement the histogram with 
zeros on its full size on the right and on the left on each level. 

5. SEARCH FOR AN ARBITRARY ELEMENT IN 
RANK SERIES 

The following algorithm is proposed:  

Algorithm 3. Search for element with a rank R in a series. 

Input: R – element rank in a series; 

L := L1 – number of the level, where recursion starts; 

h – histogram vector; 

v0 := 0 – first element of L1 level; 

Output: rank(R,v0,L) 

(For levels L1 to Lmax-1) 

1: v0 := v0 · 2; 

2: if   hL[v0]  ≥  R   then 

3:  rank(R,v0,L+1); 

4: else 

5: R := R - hL[v0]; 

6: rank(R,v0+1,L+1); 

(For level Lmax) 

1: v0 := v0 · 2; 

2: if   hL[v0]  ≥  R   then 

3:  v0 – required element; 

4: else 

5: v0+1 – required element; 

Starting from the level L1 a histogram element with the number of 
counts less than R is sought. If the first histogram element con-
tains ≥ R elements, the search is continued in the lower-level ele-
ment that the current element consists of. If the considering histo-
gram element contains less than R elements, their quantity is sub-
tracted from R, and the search is continued in the lower-level 
element that the next element on current level consists of.  

Search of the item with the given rank is performed only using the 
first element of the lower level, which was obtained in the previ-
ous step. Just one check is needed at the level Lmax. Thus, the 
search of the element with a given rank for a grayscale image in 



Figure. 4 demonstrates time statistics of proposed algorithms 
compared with [3] (times for rank algorithms do not include 
histogram updating steps). 

256 shades of gray requires not more than 7 subtractions and 
comparisons. 

6. IMPULSE NOISE SUPPRESSION 
8. CONCLUSION 

The following algorithm is proposed. A rank series is created for 
local neighborhood of central pixel (v0). If v0 is contained in K 
leftmost or rightmost elements in rank series, it is replaced by the 
mean value. This mean value is calculated over all elements of the 
rank series except of K leftmost, or rightmost elements, or over 
N-2K points. Other pixels remain unchanged. Detailed description 
of the algorithm is not given due to paper size limitations. 

This paper proposes methods for fast calculation of εV and KNV 
neighborhood average and fast search of an arbitrary element in a 
rank series (including minimum, maximum and median) with the 
use of multiscale histograms. Described algorithms do not suggest 
any method for histogram construction and maintaining. For this 
task the classic approach [2] is used. The fast algorithm from [3] 
is for future work. The algorithms have been implemented in C++ 
language with wide use of metaprogramming techniques [1] for 
cycles and recursions unrolling. 

7. RESULTS 

N is the number of elements in the neighborhood, r is the neigh-
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Figure. 3. Image filtered with median (left), with KNV (right) 
Figure. 3 demonstrates the smoothing properties of the KNV 
neighborhood average on denoised image. The smoothed image 
on the left was calculated with the Algorithm 3 with R = N/2. The 
right image was calculated with the Algorithm 2, K = 1/4N. Leaf 
corners became rounder than on the source image after filtering 
with median. But KNV-based filtering left these corners as sharp 
as they were on denoised image. 

 
I1,  
r= 12 

I1, 
r = 37 

I1,  
r = 62 

I2,  
r = 37 

I2,  
r = 62 

εV 0.031 0.032 0.032 0.110 0.110 

KNV 0.093 0.125 0.125 0.244 0.282 

rank(N/2) 0.030 0.032 0.032 0.110 0.100 

ctmf [3] 0.141 0.172 0.203 0.625 0.656 

 

Figure. 4. Time comparison for images I1 (size = 375x486) and 
I2 (size = 1000x1000). 
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