
Fast Rank Algorithms Based on Multiscale Histograms

Maria V. Storozhilova, Dmitry V. Yurin
Faculty of Computational Mathematics and Cybernetics,
Lomonosov Moscow State University, Moscow, Russia

mariastorozhilova@gmail.com, yurin@cs.msu.su

Abstract

Rank algorithms for εV and KNV neighborhood average calculat-
ing are used seldom due to their computational complexity. In this
paper fast versions of these algorithms have been proposed. They
are based on multiscale histograms. Also the impulse noise sup-
pression method is proposed.

Keywords: Rank algorithms, median, εV neighborhood, KNV
neighborhood, multiscale histograms.

1. INTRODUCTION

The main problem of rank algorithms [5] is their computational
complexity, thus only median filtering and maximum/minimum
elements search are widely spread in practical applications. Rank
algorithms do not blur the edges of objects and fit good for the
impulse noise suppression. The approach based on use, maintain-
ing and updating of histograms [2] lets to decrease median filter-
ing complexity from O(r2 log r) to O(r), where r is a neighbor-
hood radius. One of the latest works in this area describes the
algorithm [3] which lets to decrease histogram updating complex-
ity to O(1) during an image processing. However, the approach
[3] has maximum performance only for square neighborhood area
and does not provide any optimization of median calculation
process.

This work considers algorithms for fast calculation of εV and
KNV neighborhood average and fast search of arbitrary element
in a rank series. For histogram construction and updating both [2]
or [3] approaches may be used.

2. MULTISCALE HISTOGRAMS

The highest and the roughest level L0 of multiscale histogram (see
Figure 1) contains the total number of points in current pixel’s
local neighborhood and the sum of their brightness (the interval
from 0 to Imax, the maximum intensity of the image). The next
lower level (L1) of histogram contains the same information for 2
sections in the intensity range (0 to Imax/2 and from the Imax/2+1 to
Imax), at the level of L2 - for 4 sections. In other words every ele-
ment of higher level includes two corresponding elements of low-
er level.

The lowest level is the usual histogram where each element corre-
sponds to one intensity value. This level of histogram contains the
number of pixels in the neighborhood with corresponding bright-
ness values. The number of this level coincides with the number
of bits that represents the image intensity (Lmax).

Let us consider the histogram element v0 on the L3 level and its
neighborhood (element hL3[3], see Figure 1). The absolute differ-
ence between the remote from v0 tail of hL3[3] element and v0 posi-
tion on Lmax level will be called the distance from the neighbor-
hood to the adjacent left or right element. For example distance

from hL3[3] to hL3[2] equals 13-8 = 5, from hL3[3] to hL3[4] equals
19-13 = 6. Left or right element, which distance from the
neighborhood is minimal will be called the closest element.

During the histogram construction process for the current pixel,
counter in the appropriate cell on each level of the multiscale
histogram is incremented or decremented. Thus, for grayscale
images with 256 shades of gray 8 histogram levels should be up-
dated simultaneously, i.e. the complexity of the histogram con-
struction process increases 8 times. However, various mean val-
ues might be computed with logarithmic complexity (8) instead of
linear (256) in the number of 256 intensity gradations. Accelera-
tion is especially notable in the calculation of complex expres-
sions [5], for example average (εV(med(KNV(v0))).

Figure 1: Multiscale histogram.

3. εV NEIGHBORHOOD

Let us introduce some useful definitions: the rank series {v(r)} is
a one-dimensional sequence of N pixels of the neighborhood
whose elements are sorted in ascending order with respect to their
values: {v(r): v(r) ≤ v(r+1), r=0,1,..N-1}. Pixel v0 rank R is the
number of the element in the rank series.

Definition 1. εV neighborhood is a subset of pixels {v(r)} whose
values deviate from the value of the central pixel v0 at most by
predetermined quantities -ε and +ε:

.1..0},)(:)({)(000 NrvrvvrvvV

εV neighborhood average calculation is a simplified analogue of
bilateral filter [4]. Bilateral filtering has high computational com-
plexity and fast algorithms give only approximate results. The
following method is proposed for mean value calculation in εV
neighborhood:

Algorithm 1. εV neighborhood average.
Input: ε – value of epsilon parameter;

v0 – intensity of the current pixel;

vL := v0 − ε;

vR := v0 + ε;

Li := Lmax – level number;

n = 0 – number of elements in summation;

s = 0 – sum of histogram elements;

mailto:mariastorozhilova@gmail.com
mailto:yurin@cs.msu.su

h – histogram vector;

Output: average(vL; vR; s; n; Li);

1: if vR is even then

2: s := s + hLi [vR] · vR;

3: n := n + hLi [vR];

4: vR := vR - 1;

5: if vL is odd then

6: s := s + hLi [vL] · vL;

7: n := n + hLi [vL];

8: vL := vL + 1;

9: if (vL < vR) then

10: average(vL/2; vR/2; s; Li-1)

11: else

12: average value is calculated: average := s/n;

First, equidistant segment borders (vL and vR) are calculated for
the center point on the most detailed level of the histogram. Then,
while vL < vR, algorithm recursively shifts to a higher level. After
shift the borders are rounded to the next power of two. For the
current level summation involves only the segments that fall un-
der the rounding on each side of the current section.

Thus, number of operations for mean calculation in the local
neighborhood of current pixel (for arbitrary central element v0 and
ε value) will not exceed 2*7 additions and comparisons, and one
division for an image in 256 shades of gray. I.e. the proposed
algorithm has the logarithmic complexity of O(Lmax) rather than
linear complexity of O(2Lmax). Independence on the choice of v0
means that the entire class of algorithms for εV neighborhood
average calculating [5] is implemented and the central element
may be the current pixel, or the mean value or the median value,
etc.

4. KNV - NEIGHBORHOOD

Definition 2. KNV-neighborhood is a subset of a specified number
K of pixels {vn,m} whose values are nearest to the value of the
central pixel v0:

min

1

00)(:)()(
p

Kp

pr

rvvrvvKNV

Considered above algorithm for εV neighborhood average has a
disadvantage, connected with the problem of right ε choice (it is
also a problem for bilateral filtering). The value of ε should de-
pend on image content and must be calculated or set considering a
priori image information. Moreover, a single ε value choice for
the entire image can be impossible. Therefore algorithms with a
priori clear parameter values are of great interest. Particularly –
the algorithm for KNV neighborhood average is among them.

From the definition it is clear that, for example, angles of objects
≥ 90º will not be rounded off in the case of two-color image with
parameter K = ¼ N; with parameter K = ⅛ N angles less sharp
than 45º will not be rounded either. Such a priori clear depend-
ence of the results of algorithm work on its parameter makes it
applicable for use, even considering its higher complexity.

Algorithm 2. KNV neighborhood average.
Input: k – value of K parameter;

v0 – the intensity of the current pixel;

vL, vR – left and right borders of summing range;

Li – the number of the level, where hLi+1[v0] > K;

n = 3 – the number of elements, which is necessary to add on a
considering histogram level;

s = 0 – sum of histogram elements;

h – histogram vector;

Output: average_KNV(v0,vL,vR,k,s,n,L)

1: if v0 – (vL · 2Lmax – L)) > ((vR + 1) · 2 Lmax – L - 1) - v0 then

2: if hL[vR] < k then

3: s := s + hL[vR] · vR;

4: k := k - hL[vR];

5: vR := vR + 1;

6: n := n - 1;

7: else if n ≠ 2

8: s := s - hL[vL] · vL;

9: k := k + hL[vL];

10: vL := vL + 1;

11: n = 0;

12: else

13: if hL[vL] < k then

14: s := s + hL[vL] · vL;

15: k := k - hL[vL];

16: vL := vL - 1;

17: n := n - 1;

18: else if n ≠ 2

19: s := s - hL[vR] · vR;

20: k := k + hL[vR];

21: vR := vR – 1;

22: n = 0;

23: if n ≠ 0

24: average_KNV (v0,vL,vR,k,s,n,L);

25: else

26: average_KNV (v0,vL · 2,vR · 2,k,s,3,L+1);

First the roughest level, containing the number of elements not
greater than K, is searched starting with the most detailed level
(Lmax). Initial sum is the element of this level, which contains the
central pixel of the neighborhood (v0). It is proposed to add not
more than 3 closest to v0 elements at each level. If adding one of
these elements results that an intermediate sum will contain more
than K counts, n=3 or n=1, the opposite border element is sub-
tracted from the sum and step to the lower level is performed.
This step allows keeping the symmetry of the neighborhood. At
the most detailed level (Lmax) a single, closest to the center, ele-
ment is added first. After this step, the neighborhood becomes
completely symmetrical. In order to keep exactly K elements in
the resulted sum it is necessary to add no more than 2 border ele-
ments from each side.

Lemma 1. Proposed algorithm allows constructing symmetrical
neighborhood.

Proof. Let L0 represent the level, at which the first element hL0[i]
was added, it contains v0 – the central pixel of the neighborhood.
The L0 also contains odd number (1) of elements.

Let us propose that, the neighborhood contains odd number M of
elements on the level L0, the central element of the neighborhood
contains v0. Then, at the level of L0+1 the neighborhood contains
2M corresponding elements (because of a histogram construction,
see Figure 1.). Three nearest (see Chapter 2) elements, which are
not yet included into the neighborhood, will be added by turn. Let
us consider 2 cases.

1) Let addition the first item failed. Then the opposite extreme
element is excluded from the neighborhood. In that case the dis-
tance between left and right borders of the neighborhood will
differ by no more than the size of one element (see Chapter 2) of
the level of L0+1 of histogram.

2) Let addition the first item succeeded. The neighborhood will be
more symmetrical after adding the first element on current level,
because the element was added from the border where the dis-
tance from that border to v0 is minimal.

The addition of the second element.

1) Let the addition of the second element failed. Then the level
handling is over.

2) Let addition the second element succeeded. Then the procedure
of addition of the third element is similar to the procedure of addi-
tion of the first element.

Thus, on the level of L0+1 the neighborhood contains the odd
number of elements, and the central element of the neighborhood
contains v0. Then the distance between left and right borders of
the neighborhood differs by no more than the size of one element
of the level of L0+1 of histogram.

Finally, because of the principle of mathematical induction, all
the levels from L0 to Lmax contain the odd number of elements, the
central element of each level contains v0 and the dissymmetry of
the neighborhood is lesser than the size of the element on each
level. Addition of the nearest element on the level of Lmax guaran-
tees that the neighborhood will be symmetrical.

Lemma 2. The algorithm guarantees that the neighborhood will
contain less than K elements for any L ≥ L0. Addition of one ele-
ment on the right and on the left sides guarantees that the neigh-
borhood will contain not less than K elements.

Proof. Let L0 represent the level, at which the first element hL0[i]
was added, it contains v0 – the central pixel of the neighborhood.
The L0 also contains odd number (1) of elements. Then the
neighborhood will contain ≥ K counts with nearest left and right
elements.

Let us assume that the histogram contains the odd number of ele-
ments on the level of L0, the central element of the neighborhood
contains v0. Then, at the level of L0+1 the neighborhood contains
2M corresponding elements (because of a histogram construction
Img.1.). Three nearest elements (see Chapter 2), which are not yet
included into the neighborhood, will be added by turn. Let us
consider 2 cases.

1) Let addition the first item failed. Then the opposite extreme
element is excluded from the neighborhood. In that case the num-
ber of counts in the neighborhood will be < K. But the neighbor-
hood will contain ≥ K counts with nearest left and right elements.

2) Let addition the first item succeeded. Then the neighborhood
contains < K counts.

The addition of the second element.

1) Let the addition of the second element failed. Then the level
handling is over. In that case the neighborhood will contain ≥ K
counts with nearest left and right elements.

2) Let addition the second element succeeded. Then the procedure
of addition of the third element is similar to the procedure of addi-
tion of the first element.

Thus, the neighborhood contains ≥ K counts with nearest left and
right elements on each level from L0 to Lmax. If one more element
from each border of the neighborhood is considered together with
previous 3 elements on the level of Lmax (in all 5 elements on the
level) then neighborhood will be guaranteed to contain ≥ K
counts.

Algorithm 2 may go beyond the borders of the histogram vector
while adding or subtracting elements on each level of the histo-
gram. To avoid the growth of difficulty because of permanent
index checks, it is proposed to supplement the histogram with
zeros on its full size on the right and on the left on each level.

5. SEARCH FOR AN ARBITRARY ELEMENT IN
RANK SERIES

The following algorithm is proposed:

Algorithm 3. Search for element with a rank R in a series.

Input: R – element rank in a series;

L := L1 – number of the level, where recursion starts;

h – histogram vector;

v0 := 0 – first element of L1 level;

Output: rank(R,v0,L)

(For levels L1 to Lmax-1)

1: v0 := v0 · 2;

2: if hL[v0] ≥ R then

3: rank(R,v0,L+1);

4: else

5: R := R - hL[v0];

6: rank(R,v0+1,L+1);

(For level Lmax)

1: v0 := v0 · 2;

2: if hL[v0] ≥ R then

3: v0 – required element;

4: else

5: v0+1 – required element;

Starting from the level L1 a histogram element with the number of
counts less than R is sought. If the first histogram element con-
tains ≥ R elements, the search is continued in the lower-level ele-
ment that the current element consists of. If the considering histo-
gram element contains less than R elements, their quantity is sub-
tracted from R, and the search is continued in the lower-level
element that the next element on current level consists of.

Search of the item with the given rank is performed only using the
first element of the lower level, which was obtained in the previ-
ous step. Just one check is needed at the level Lmax. Thus, the
search of the element with a given rank for a grayscale image in

Figure. 4 demonstrates time statistics of proposed algorithms
compared with [3] (times for rank algorithms do not include
histogram updating steps).

256 shades of gray requires not more than 7 subtractions and
comparisons.

6. IMPULSE NOISE SUPPRESSION
8. CONCLUSION

The following algorithm is proposed. A rank series is created for
local neighborhood of central pixel (v0). If v0 is contained in K
leftmost or rightmost elements in rank series, it is replaced by the
mean value. This mean value is calculated over all elements of the
rank series except of K leftmost, or rightmost elements, or over
N-2K points. Other pixels remain unchanged. Detailed description
of the algorithm is not given due to paper size limitations.

This paper proposes methods for fast calculation of εV and KNV
neighborhood average and fast search of an arbitrary element in a
rank series (including minimum, maximum and median) with the
use of multiscale histograms. Described algorithms do not suggest
any method for histogram construction and maintaining. For this
task the classic approach [2] is used. The fast algorithm from [3]
is for future work. The algorithms have been implemented in C++
language with wide use of metaprogramming techniques [1] for
cycles and recursions unrolling.

7. RESULTS

N is the number of elements in the neighborhood, r is the neigh-
borhood radius, R is the rank for Algorithm 3. 9. ACKNOWLEDGMENT
Figure.2 shows source image with added impulse noise and the
result of its filtering using the algorithm from section 6. The research is done under support of Federal Target Program

"Scientific and Scientific Pedagogical Personnel of Innovative
Russia" in 2009-2013 and the Russian Foundation for Basic Re-
search, project no. 09-07-92000-HHC_a.

10. REFERENCES

[1] Alexandrescu A., Modern C++ Design: Generic Program-
ming and Design Patterns Applied. Addison-Wesley. ISBN 978-
0201704310, February 2001.

[2] Huang T., Yang G., and Tang G., “A Fast Two-Dimensional
Median Filtering Algorithm,” IEEE Trans. Acoust., Speech, Sig-
nal Processing, vol. 27, no. 1, pp. 13–18, 1979.

Figure. 2. Source and filtered image [3] Perreault S., Hebert P., “Median Filtering in Constant
Time”, IEEE Transactions on Image Processing, vol. 16, pp.
2389-2394, 2007.

[4] Tomasi C., Manduchi R., "Bilateral Filtering for Gray and
Color Images", iccv, pp.839, Sixth International Conference on
Computer Vision (ICCV'98), 1998

[5] Yaroslavsky L.P., Kim V., “Rank Algorithms for Picture
Processing, Computer Vision”, Graphics and Image Processing,
v. 35, 1986, p. 234-258

About the author

Maria V. Storozhilova, is a student at Chair of
Mathematical Physics, Faculty of Computa-
tional Mathematics and Cybernetics, Lo-
monosov Moscow State University, Russia.
Her contact email is. mariastorozhilo-
va@gmail.com

Dmitry V. Yurin (PhD) is a senior researcher
at laboratory of Mathematical Methods of Im-
age Processing, Faculty of Computational
Mathematics and Cybernetics, Lomonosov
Moscow State University, Russia. His contact
email is yurin_d@inbox.ru

Figure. 3. Image filtered with median (left), with KNV (right)
Figure. 3 demonstrates the smoothing properties of the KNV
neighborhood average on denoised image. The smoothed image
on the left was calculated with the Algorithm 3 with R = N/2. The
right image was calculated with the Algorithm 2, K = 1/4N. Leaf
corners became rounder than on the source image after filtering
with median. But KNV-based filtering left these corners as sharp
as they were on denoised image.

I1,
r= 12

I1,
r = 37

I1,
r = 62

I2,
r = 37

I2,
r = 62

εV 0.031 0.032 0.032 0.110 0.110

KNV 0.093 0.125 0.125 0.244 0.282

rank(N/2) 0.030 0.032 0.032 0.110 0.100

ctmf [3] 0.141 0.172 0.203 0.625 0.656

Figure. 4. Time comparison for images I1 (size = 375x486) and
I2 (size = 1000x1000).

mailto:mariastorozhilova@gmail.com
mailto:mariastorozhilova@gmail.com
mailto:yurin_d@inbox.ru

	1. INTRODUCTION
	2. MULTISCALE HISTOGRAMS
	3. εV NEIGHBORHOOD
	4. KNV - NEIGHBORHOOD
	5. SEARCH FOR AN ARBITRARY ELEMENT IN RANK SERIES
	6. IMPULSE NOISE SUPPRESSION
	7. RESULTS
	8. CONCLUSION
	9. ACKNOWLEDGMENT
	10. REFERENCES

