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Abstract

In this paper a new automated hybrid method for short-term flare
forecasting is introduced and suggested for future use.

At the initial stage we created a flare base, and an image base for
1996–2009 years interval.

Further, we derived simple and efficient parametric precedent
model, which turned our prediction problem into two-class classifi-
cation problem, and developed machine learning-based procedures
for features extraction from both magnetograms and continuum im-
ages.

We develop an experimental protocol to estimate the accuracy of
obtained decision rules and report 63% to 82% on balanced data
(maximum worst-case), 73% to 90% on real data depending on the
choice of precedent model configuration.

Keywords: solar flare forecast, precedent model, spherical cor-
rection, sunspots clustering, magnetogram segmentation, active re-
gions localization.

1. INTRODUCTION

A solar flare is a sudden brightening observed over the Sun surface
or the solar limb, which is interpreted as a large energy release.
Sunspots are temporary phenomena on the photosphere of the Sun
that appear in visible spectrum as dark spots compared to surround-
ing regions. An active region (AR) on the Sun is an area with an
especially strong magnetic field. Sunspots usually form in active
regions.

X-rays emitted by solar flares can affect Earth’s ionosphere and dis-
rupt long-range radio communications and disturb operation of nav-
igation systems. The most violent eruptions may affect satellite or
cause problems with power grid.

Solar flares research has shown that X-ray flares are closely related
to sunspots and active regions [1]. So, a number of flare forecasting
methods based on this relationship has been proposed. McIntosh [2]
revised sunspot classification and specially dedicated system called
Theophrastus was developed in 1987. The method depends on hu-
man expert.

In 2009 Qahwaji and Colak presented an automated hy-
brid computer platform for the short-term prediction of sig-
nificant solar flares using Solar and Heliospheric Observatory
(SOHO)/Michelson Doppler Imager (MDI) images[3]. Proposed
method incorporates sunspot grouping (both MDI continuum and
magnetogram images are used), McIntosh-based classification, and,
afterwards, flare prediction using neural networks.

Yu et al. [4] analyzed the influence of sequences of magnetic-based
parameters on the flare level and proposed bayesian solar flare pre-
diction models.

Very recently Falconer et al. introduced their tool for empirical
forecasting of major flares from a proxy of active region free mag-
netic energy [5]. Their method is mainly focused on measuring the
proxy of the active regions free magnetic energy, and the empirical

relationship is then used to convert the free magnetic energy proxy
into an expected event rate.

In our research we included features of both types (magnetic and
continuum), derived adequate precedent model in order to use Sup-
port Vector Machine (SVM) classification algorithm. As a result,
fully-automated testing system was built and good short-term pre-
diction results achieved.

The rest of the paper is organized as follows. The solar data used
in this paper are described in Section 2.. A precedent model is pro-
posed in Section 3.. Features extraction is discussed in Section 4..
The implementation of the system and testing results are reported
in Section 5..

2. DATA

In this study we used data from the publicly available NOAA so-
lar flare catalogue1 and images in FITS format from SOHO/MDI in
the resolution 1024px x 1024px (can be downloaded via web inter-
face2). SOHO/MDI provides both continuum (”white-light”, 2–5
per day) and magnetogram observations (in the vicinity of the Ni I
6767.8 Å photospheric absorption line, 6–14 per day) of the Sun.

We created a flare base, consisting of 24658 events, and an image
base, including 40573 magnetograms and 14927 continuum images
from 1996–2009 years interval. All flares are divided into flare se-
ries (using the NOAA active region number): 1397 series, maxi-
mum flares in series is equal to 154, minimum — 1, in average —
8. We use notation (if , jf ), where if — series number, jf — flare
number in the series.

3. PRECEDENT MODEL

Solar flares are classified as A, B, C, M or X according to the peak
flux as measured on the GOES spacecraft. Hereinafter we use the
following notation: strong flares are flares not not weaker thanMf ,
weak flares, respectively, are weaker than Mf . The exact values of
parameters we used are given in the end of the section. It is assumed
that precedent model is built on the training stage of the method, so,
we know when and where a flare occurred.

Stage 0. For simplicity, let’s fix flare F , which will correspond to
a precedent. It uniquely localizes an active region on every image
within flare’s prehistory. We consider only images within flare’s
Tph days prehistory. Hereinafter the words ”preceding”, ”closely
located”, ”nearest” should be treated in the context of time.

Stage 1: base precedent. We choose a magnetogram image and
the nearest preceding magnetogram image located not closer than
∆f days. Denote the first image as ”head magnetogram”. For the
head image we determine the most closely located continuum im-
age (”head continuum”), for which we also find the nearest preced-
ing image located not closer than ∆f days. Two pairs of images
and active region on them we denote as base precedent.

Stage 2: positive and negative precedents. Positive precedent

1http://www.ngdc.noaa.gov/stp/solar/solarflares.html
2http://sohowww.nascom.nasa.gov/data/archive/



(class 1) is a base precedent, which meets following requirements:
1. Time from a head magnetogram to the flare does not exceed Tf .
2. Flare strength is not less than Mf .
3. The nearest flare, which meets 1. and 2., corresponds to the head
magnetogram.
Negative precedent (class 0) is a base precedent, which is not a
positive one.

Tf , Mf , ∆f , Tph are structural parameters of the prece-
dent model. In our research we suppose Mf ∈ Mset =
{C5.0,M1.0,M5.0, X1.0}, Tf ∈ Tset = {1.0, 1.5, 2.0} days,
∆f = 0.25 days, Tph = 4.0 days, so, we investigate different
configurations.

4. FEATURES

A general scheme for features extracting is the following:
1. We fix a head magnetogram and build a precedent according the
model.
2. Sunspot groups are localized on the nearest to the flare cont-
image.
3. If there is a no correspondence between the flare and one of the
sunspot groups, we start building another precedent. Otherwise we
have the sunspot group and all its characteristics (including bound-
ing box parameters).
4. Steps 2–3 are performed for the second cont-image. After that
we are able to extract cont-features from the pair of cont-images
(Section 4.1).
5. We apply tracking procedure to the found sunspot group (to be
precise, to the center of its bounding box) to locate active regions
on both magnetograms and extract from them magn-features (Sec-
tion 4.2).

The described above scheme is applied for the whole image base for
every configuration (Mf , Tf ) ∈ {Mset × Tset}. As a result we
have |Mset| · |Tset| datasets. We use a notation XMf , Tf ∈ Rm×n

for features table, YMf , Tf ∈ {0, 1}m×1 for class labels, where
m — number of features, n — number of precedents.

4.1 Continuum-based features

4.1.1 Continuum images preprocessing

If we have plane projection of a semisphere, we can not avoid dis-
tortions: the same areas on a semisphere in general case are not
the same after projection. A point on a semisphere is denoted as
P ′(x′, y′, z′), it corresponds to a point P ′xy(x′, y′) on the visible
image. Supposed that spherical correction maps a point P ′xy to a
pixel P (x, y) on spherically corrected image.

Assuming that proposed mapping keeps ratio 1
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To get approximation of the intensity in P ′(x′, y′), we use bilinear
interpolation.

Further a term ”image” is used for images with applied spherical
correction procedure.

Before the preprocessing we create an average background cont-
image (pixel-by-pixel median through 500 cont-images); it is also
called ”quiet Sun image”.

We also perform Gaussian blurring with σ = 0.7 and
window size = 7 and cut-off beyond αcut = 65◦ (heliocentric
degrees) to get rid of limb darkening and overblurring effects.

4.1.2 Adaptive binarization

We worked out simple adaptive binarization procedure to local-
ize sunspot groups in the Sun (see figure 1 c): we set knowingly
high threshold T0 = 0.98 and start decreasing it with the step
τ = 0.002. At every step binarizarion is performed, thus, we
know the number of connected components and their sizes. If con-
nected components number doesn’t exceed Nmax comp = 100,
and among them there are no components with area is more than
0.12 ∗ (R ∗ sinαcut)

2), then we have found appropriate binariza-
tion threshold Tbin. Exceeding maximum loop iterations number
Nmax iter = 80 is an alternative loop exit condition.

4.1.3 Umbra and penumbra segmentation

When viewed through a telescope, sunspots have a dark central re-
gion known as the umbra, surrounded by a somewhat lighter region
called the penumbra. Umbra and penumbra characteristics can be
used for solar flare prediction [2].

Area of the sunspot is denoted as SF . Quiet Sun intensity value
Iq is a non-zero intensity, corresponding to the peak on the his-
togram of a preprocessed image (we used a partition of [0, 1]
in Nhist bins = 1000 equal intervals). Our approach to umbra
and penumbra segmentation is based on the method proposed by
Zharkov et al. [6], which incorporates umbra (Tu) and penumbra
(Tp) thresholds:
1. if SF ≤ 5 pixels then assign the thresholds: Tp = 0.91 ∗ Iq;
Tu = 0.6 ∗ Iq
2. if SF > 5 pixels then assign the thresholds: Tp = 0.93 ∗ Iq;
Tu = max(0.55 ∗ Iq,EP − ∆P ), where EP is the mean inten-
sity value, ∆P is the standard deviation for pixel intensities in the
region F .

Our modification uses only Tp threshold. Thus, sunspot pixels,
which are not in umbra, are supposed to be in penumbra; due rather
flexible adaptive binarization, Tbin could be considered as Tp ana-
logue (see figure 1 e).

4.1.4 Sunspots clustering

After localizing sunspots we need to combine them into several
sunspot groups. For this purpose we use agglomerative hierarchical
clustering procedure with euclidian metrics and Ward linkage (see
figure 1 f).



4.1.5 Extracted features

Described above stages of cont-images processing make calculat-
ing cont-features for a pair of images possible. Cont-features are
calculated using head continuum image, their speed of change —
using the both images. A sunspot group is unambiguous defined by
the solar flare, corresponding to a precedent.

Extracted cont-features:
1. umbra square of the sunspot group,
2. penumbra square of the sunspot group,
3. speed of change for 1–2 (px/sec).

Figure 1: Vicinity of the sunspot group, localized on cont-image
4240.0003, at different stages of features extraction: (a) — initial,
(b) — after spherical correction, (c) — the result of adaptive bi-
narization, (d) — segmented umbra and penumbra (using Zharkov
et. al method), (e) — segmented umbra and penumbra using our
method, (f) — after clustering all neighboring sunspots form a
sunspot group.

4.2 Magnetic-based features

A magnetogram image is a representation of the variations in
strength of a magnetic field. Black regions correspond to strong
positive magnetic field, white regions — to strong negative mag-
netic field, neutral Sun regions are marked with grey color. We
extract magn-features in three stages: performing segmentation of
a magnetogram, finding active regions, counting features.

4.2.1 Segmentation

The first step is to find the areas of strong positive magnetic fields,
strong negative magnetic fields and neutral areas. Proposed method
is based on variational approximation [7] with the use of global con-
straints [8], which give us a possibility to include some physically-
driven conditions in our model (i. e. the equality of positive and
negative fluxes within AR).

Let i be the pixel of an image with the value of the magnetic field
Ii, N — number of pixels, Zi — class label for pixel i, E — neigh-
borhood system.

In these terms the discrete optimization task could be formulated as

p(I|Z) ∝
N∏
i=1
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∏
j∈E(i)

φ(Zi, Zj)→ max
Z

(2)
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This task is solved with factorized approximation

p(Z|I) ≈ q(Z) =
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Minimizing KL-divergence between q(Z) and p(Z|I) the follow-
ing equation could be obtained:
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Using the exact form of p(Z) we obtained iterative process
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4.2.2 Active region search

For localizing an active region on the Sun we use the method in-
troduced in [9], which is based on the branch and bounds approach
to maximizing the functional defined on a rectangle. The initial
bounding rectangle on a magn-image is obtained through tracking
and the following enlarging it in 2.5 times.

Let R be the rectangle, Ai = qi(1) + qi(2) and Bi = qi(3). The
active region could be found by maximizing the following func-
tional:

F (R) = α
∑
i∈R

Ai −
∑
i∈R

Bi + β
√
Area(R)

∑
i∈border of R

Bi.

The global optimum could be found using the function F̂ (R) which
is the top border of F (R) and equal F (R)if R = {R}. The opti-
mization procedure is then performed as follows: at the first step
R consists of all the possible rectangles R, the sets R are placed
in the priority queue in a decreasing order of F̂ (R), in every step
the first element of the queue is divided into two and returned back
to the queue. If the first element of the queue consists of just one
rectangle, that is the answer.

In our case the function F̂ (R) could be chosen as follows:
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∑

i∈Rsmall
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∑

i∈Rbig
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i∈bottom border of R

Bi
)

(4)

Finally, we get a refined bounding box, specifying active region
on a magn-image more precisely. The result of the procedure with
α = 4, β = 0.05 is presented in figure figure 2 a,

4.2.3 Neutral line

The neutral line concept is supposed to give several informative
features. We define it as follows: neutral line is a line separating
the regions of strong magnetic fields obtained from segmentation
with different polarities.

Neutral line extraction is applied to a refined active region. We use
both direct implementation of the definition and the robust algo-
rithm that cuts off small regions and small fragments of the line.
The resulting simple neutral line is presented in white in figure 2 b,
the robust line is given in black in the same figure.



Figure 2: (a) — the localized active region, (b) — standard (white)
and robust (black) versions of the neutral line.

4.2.4 Extracted features

Magn-features are calculated using head magnetogram image, their
speed of change — using the both images. An active region is un-
ambiguously defined by the solar flare, corresponding to a prece-
dent. An AR is specified by it’s bounding box.

Extracted magn-features:
1. sum of magnetogram values in the area corresponding to a posi-
tive/negative segment inside bounding box (positive/negative flux),
2. maximum absolute value of the magnetic flux in the bounding
box (maximum absolute flux),
3. area of the dilated line with the dilation coefficient equal to 5 for
simple and robust algorithms (simple/robust line area),
4. sum of the positive/negative magnetic flux inside the area of the
dilated line with the dilation coefficient equal to 5 for simple and
robust algorithms (simple/robust line positive/negative flux),
5. speed of change for all of the features above.

5. TESTING SYSTEM AND RESULTS

For testing purposes we use libSVM implementation of Support
Vector Machine two-class classifier. After several numerical ex-
periments with different kernel and structural parameters we have
found that the best result of SVM with RBF-kernel is worse than
with linear one. So, further only linear SVM with the only struc-
tural parameter C is used. We implemented an exhaustive search
of the optimal parameter value over the set Cset = {2.25i | i ∈
{−4,−3, . . . , 4}}.
Several precedents can have correspondence to one flare. So, we
can define max-based decision rule: we obtain class labels for all
test precedents in usual way, then we perform postprocessing or-
ganized as follows. For every precedent we calculate maximum
among class labels of the precedents, which correspond to the same
flare as our precedent. Thus, we decrease probability of missing
positive precedents.

Every calculated dataset (XMf , Tf , YMf , Tf ) is divided into three
non-intersecting approximately equal parts: train (to learn our
classifier), test (to find the most optimal configurations of the struc-
tural parameters), and TEST (to get testing results). The union of
train and test is denoted as TRAIN .

Although negative precedents are much more numerous than posi-
tive (strong flare is a rare event), we should learn and optimize our
classifier on balanced datasets train and test.

Except this, to get rid of the similarity between the precedents in
one series of flares, we decided to put the precedents, corresponding
to flares belonging to the same flare series, either all in train or all
in test.

Although a reasonable amount of features is calculated, we don’t

exactly know, which of them are really informative for one or the
other precedent model configuration. Therefore, we implemented
full search over all subsets {F |F ⊆ 2Fset , F 6= ∅}. Fset includes
the following features: umbra square of the sunspot group and it’s
speed of change, negative flux and it’s speed of change, maximum
absolute flux and it’s speed of change, robust line negative flux and
it’s speed of change, speed of change of the simple line negative
flux.

To obtain the final results table 1 we run our testing procedure for
every configuration (Mf , Tf ) ∈ {Mset × Tset}; partitioning into
TRAIN and TEST was fixed; the results were averaged over 5
different partitions of TRAIN into train and test.

aaaaa
Mf

Tf 1.00 1.50 2.00

C5.0 36.0 26.9 36.6 29.3 37.0 30.1
M1.0 31.7 22.3 36.2 22.2 36.5 22.2
M5.0 26.7 12.3 29.3 13.7 25.7 13.7
X1.0 19.9 9.4 17.3 10.2 19.0 11.6

Table 1: Average error rates (%) on TEST dataset: for balanced
(first number) and unbalanced (second number) it’s versions.

Since real data are unbalanced (strong flares are much less than
weak ones), second number (bold) in every cell can be considered
as unbiased error rate of our method; a cell is chosen according
our forecast needs. Finally, we have 63% to 82% on balanced data
(maximum worst-case), 73% to 90% on real data.

In the nearest future we intend to incorporate in our method some
additional physically-driven features, include SHO/HMI images
support, and build fully-automated web-compliant prediction sys-
tem.
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