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Abstract 

The differential geometry based formula for edge curvature esti-
mation at a fixed scale is derived in the paper. It is shown that 
having lines of various curvatures in the same image, one is not 
able to estimate them correctly using a fixed scale. So we propose 
scale space algorithm which allows to choose proper scale adap-
tively in every point of interest. Relationship between curvature 
and scale required to estimation was derived analytically, constant 
was found and the relationship was proved via numerical model-
ing. The scale space algorithm for edge curvature estimation can 
be used in particularly for straight line detection. It allows to se-
lect only points of interest (points with low curvature). This 
speeds up detection algorithms and decreases probability of miss-
ing lines for complex scenes. 

Keywords: curvature estimation, edge detection, scale space, 
differential geometry, straight line detection, circle detection. 

1. INTRODUCTION 

The idea of scale-space was suggested by Witkin [1] and 
Koenderink [2] and then was developed by Lindeberg [3]. Scale 
space approach is used in the theory of differential invariants [8] 
which have been successfully applied to feature detection, de-
scribing of detected features [4,5,6] and edge detection [7]. In-
formativeness of such differential invariants as gradient absolute 
value and Laplacian has been proved by effectiveness of their 
application to edge and feature detection tasks. However, infor-
mativeness of high order invariants is unclear from the tasks of 
matching or learning [12]. In this paper it is first time suggested to 
use 4-th order invariant – edge curvature – for measurements 
instead of characterization. It is shown in the paper that edge cur-
vature calculated in scale space is stable enough to classify edge 
points. 

Typical straight line detection scheme consists of two steps: edge 
detection and straight segment finding. The last step are generally 
realized via Hough transform (HT) [10,11] or some randomized 
algorithm. If we remove after the first step all points where edges 
have high curvature a lot of curve lines will be removed. Thus 
maxima in accumulator array will be sharper for HT and probabil-
ity of successful choice will be larger for randomized algorithm.  

2. CURVATURE ESTIMATION AT A FIXED SCALE 

We will deal with images smoothed via convolution with Gaus-

sian kernel, i.e. we use scale-space  tyxL ,,  parameterized 

with 
2t , where   is the Gaussian’s standard deviation. 

Let us consider edge point P on the plane  yx, . We will use so 

called gauge coordinates [8]  wv,  in the point P, where v-axis is 

tangent to the curve in the point P and w-axis is normal to the 

curve. Origin of coordinates is in the point P, so 0v , 0w . 

Curvature in the point (0,0) is 
22 )('' dvvwdw  . 

Let us consider a curve equation constyxf ),(  and obtain 

the curvature formula for it in a manner similar to [8]. After tak-
ing first and second derivatives with respect to v  we obtain: 

0' wff wv  (1) 

and 0'')'('' 2  wfwfwfwff wwwwvvwvv  (2) 

As v -axis is tangent to curve in point P,   00,0 vf  and (1) re-

sults in 0'w . Thus (2) can be reduced to: 

0)0('')0,0()0,0(  wff wvv , (3) 

)0,0()0,0()0('' wvv ffw   (4) 

Expression (4) is the equation for curvature of the line defined by 

the implicit equation constyxf ),( . 

In the gauge coordinates edge can be described as points where 
absolute value of intensity derivative in the w-axis direction 

wL   have a maxima, i.e. 0wwL . 

For edge defined by wwLyxf ),( , the expression   00,0 vf  is 

satisfied and hence (4) can be used to obtain curvature equation: 

   0,00,0)0('' wwwwwvvedge LLw   (5) 

Equation (5) in coordinates  yx,  can be rewritten explicitly: 

BAedge  ,    where 
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Figure 1 demonstrates curvature estimation with various values of 
  for image 1a of size 512×512 containing the circles with radii 
10, 30, 50, 100, 150, 200 pixels. It is obvious from (6) that curva-
ture estimation can be carried out only near edges where gradient 



absolute value is not near to zero. Other regions are marked with 
white in Figure 1c-e. 

  
                  a)                                              b) 

 
                c)                               d)                               e) 

Figure 1: a) the original image, b) correspondence between color 

and curvature radius 1R  in pixels, c-e) curvature estimation 

using edge curvature formula (6): c) 1 , d) 17.3 , 

e) 35.6 . 

Nonconstant curvature along circle is caused by pixel structure of 
the image. It is seen that this radial effect decreases with increas-
ing scale  . Derivatives in (6) are computed via convolutions 
with derivatives of Gaussian function, i.e. via integration in 
neighbourhood with radius of order of  . So, an acceptable 
accuracy of curvature estimation can be reached if the filled area 
in Figure 2 contains large enough number of pixels: 

const  .  

It can be easily seen from Figure 2 that  
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So, substituting this result into previous formula we obtain 

cR 3 , where c  is constant (7) 

When such req   is reached we can see the uniformly col-

ored circles in Figure 1d (red circle 10R , 17.3 ) and 1e 

(green circle 100R , 35.6 ). While req  , curvature 

estimation demonstrated radial structure caused by pixel structure 
of a curve. 

In Figure 1e the typical ring-like artifacts of various colors ap-
peared near circles of small radii. These artifacts are caused by 
influence of neighbour edges which are closer to each other than 
distance proportional to  . In such cases integrals value are 
result of some “edge mixture” and curvature estimation is bad.  

 
Figure 2: Circle arc. 

Any edge in real image is likely to be situated near other edges. 
Since distance to the closest edge is unknown we use the smallest 
size of sigma which satisfies (7) to decrease possibility of 
neighbour edges influence: 

  3 cRRreq   (8) 

So, having edges with different curvatures in the same image it is 
impossible estimate their curvature using the same  . It is the 
reason to develop a scale-space algorithm proposed in section 5. 

3. PRECISION OF CURVATURE ESTIMATION AND 
DETERMINATION OF THE PROPER SCALE 

Estimation (8) is confirmed by the experiments with model im-
ages each of which contains a single circle of the known radius 

 900,100 R . For these images we calculate curvature in 

edge points using the same   for the whole image. Then we 
build histogram of the obtained curvature values. 

   
                           a)                                                 b) 

Figure 3: a) the dependence of curvature estimation error 

0RR  and 0R . R  is histogram dispersion, 0R  is  

known radius, b) – minimal value of 
3  allowing estimation 

with precision 15%. – approximation of the experimental line. 

Curvatures in the points of ideal circle are the same, but we deal 
with circle at a finite pixel grid and there is radial effect. For cur-

vature estimation with  Rreq   there is spread of obtained 

curvature values and its histogram has width 

  212
RRR   other than 1. So we need to analyze his-

togram width (see Figure 3a). Fixing the desired precision 

( %150  RR  was used) we can determine  Rreq  for 

which chosen precision reaches. Inclination angle of approxima-

tion line in Figure 3b gives the coefficient for (7), (8) 4.1c . 
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4. SCALE SPACE CURVATURE ESTIMATION 

In this section we propose an algorithm for scale space curvature 
estimation. In our tests scale-space was built using   grid: 

0.10  , ii s  1 , 3 2s , and the constants 

2.0   were used. 

Algorithm 1. 

for each scale level i : 

for each pixel where curvature has not been calculated yet: 

1. Get curvature value i  using i  from (6). 

2. Calculate average i  and d  mean deviation of 

i  in the edge-neighbourhood of the current point 

3. Calculate iiR 1:  and  ireq R  using (8) 

4. If   iiiii ordorR   1ireq
 

then i  is correct, do not calculate value in this 

point with further scales. 

Edge-neighbourhood means only edge points which are situated 
within neighbourhood of the current point. Following the logic of 
scale space approach we choose neighbourhood radius dependent 

on scale and equal to  2,2max i . 

On step 5 of the algorithm we check stability and correctness of 

the curvature i  calculated using i . If curvature deviation 

within edge-neighbourhood is high: id   then it is cased 

by noise and radial effect and greater scale should be chosen to 
correct estimation. Also if curvature value changes sharply from 

previous scale to the current: ii   1i , then current 

scale i  is not large enough. 

   
                                a)                                   b) 

Figure 4: b) Scale space curvature estimation for image 4a. Cur-
vature is shown only in edge points (see 1b for color notation). 

It can be seen from Figure 4 that the proposed multiscale algo-
rithm allows correct curvature estimation for images containing 
lines with various curvatures. Application of statistical differenc-
ing [9, p. 288] to images before curvature estimation allows to 
enhance image quality and to obtain more precise estimation. 

5. CURVATURE FILTERING FOR LINE DETEC-
TION 

Straight line detection is an example of the area where the pro-
posed curvature algorithm can be applied. A common scene usu-

ally contains not only straight lines and selection of points with 
low curvature allows straight line detector to work only with 
points of interest and to exclude from consideration impossible 
line positions (some kind of noise). We demonstrate this benefit 
on example of Hough transform [10]. 

For each image from the test base (containing synthetic and real 
images) we have compared HT sinogram [11] (accumulator array) 
mapped from all edge points and sinogram mapped from points 
with low curvature. Typical examples of such sinograms are pre-
sented in Figures 5d, f.  

  
                       a)                                                   b) 

  
                             c)                                         d) 

  
                               e)                                         f) 

Figure 5: b) curvature estimation for image 6a, c) all edges, 
 d) sinogram built for all edge points, e) edge points with  
high curvature radius 150R , f) sinogram built for 6e). 

In order to compare this sinograms we introduce measure of con-

trast of sinogram local maxima IvIT , where I  is intensity in 

local maxima, vI  is average intensity in a ring neighbourhood of 

maxima. This comparison has shown that contrast of sinogram 
maxima corresponding to real straight lines increased signifi-
cantly (see Table 1), while sinogram maxima due to false line 
detections were suppressed. 

Table 1: Measure of contrast in sinogram local maximum IIT v  

Sinogram built for:  
gradient abso-

lute value 
all 

edges 
filtered 
edges 

Point 1 0.5 0.32 0.034 
Point 2 0.4 0.13 0.03 
Point 3 0.37 0.17 0.029 
Point 4 0.52 0.18 0.022 
Average over test base 0.4 0.15 0.03 



Some examples of high curvature edges suppression are shown in 
the Figure 6.  

 
 

a) b) 

 
 

c) d) 

 
 

e) f) 

Figure 6: c), d) edges curvature estimation, e), f) edges with low 
curvature. Colors correspond to curvatures according to Figure 1b 

6. CONCLUSION 

The differential geometry based formula (6) for edge curvature at 
a fixed scale has been derived in the paper. It has been shown that 
curvature estimation at a fixed scale suffers of lack of accuracy so 
a scale space algorithm for edge curvature estimation has been 
proposed.  

We have analyzed curvature estimation accuracy in dependence 
on used scale and have obtained a requirement for minimal scale 
selection; the coefficient in this formula has been obtained with 
numerical modeling.  

The tests performed on synthetic and natural images show that the 
proposed algorithm allows correct curvature estimation for most 
of edge points even for images where lines curvature changes in 
range from small circles to straight lines. 

An application of curvature analysis for straight line detection has 
been suggested. It has been shown that suppression of edge points 
with high curvature results in increasing sinogram quality and 
better contrast of its pikes correspondent to straight lines. 
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