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Figure 1: Input rectified image of building’s facade (left) and automatically recognized structure, 

presented as a set of non-overlapping grids of similar windows (right). 

 

Abstract 
Automation of facade images interpretation is a crucial task for 
efficient 3D modeling of urban areas. Information about 
regularities in facade images can be used for image completion of 
texture areas occluded with foreground objects, 3D model 
compression and texture quality enhancement. Existing 
approaches cannot handle the whole variety of buildings facades 
and often fail in cases of occluded textures. We present a novel 
algorithm for automatic extraction of facade structure from single 
rectified image. We describe facade structure as a set of non-
overlapping grids of similar facade parts, usually containing 
windows. The most frequent possible grid cells sizes and grid 
cells centers are estimated by detecting and analyzing similar 
rectangles in input image. Greedy iterative algorithm sequentially 
chooses grids with maximum quality measure that incorporates 
empirical observations about similarities and symmetries. 
Comparison on the database, created from publically available 
sources with additional complex examples from our photos, 
shows that the proposed algorithm outperforms two other state-of-
the-art methods and can handle occlusions. 
Keywords: Facade, Structure, Regularity, Grid, Lattice, Urban, 
3D City Map, Image-based, Rectified, Texture, Single-view, 
Occlusion, Recognition, Reconstruction. 

1. INTRODUCTION 

Efficient mass-production of 3D cities maps is one of the topical 
problems at the junction of geo informatics and computer vision. 
3D maps are natural evolution of ordinary flat 2D maps. They can 
be used in a variety of common geo informational tasks, like 
navigation, city planning, etc., and also afford new opportunities 
for virtual and augmented reality, location-based services, etc. 
3D maps topic has gained a lot of attention in last few years. 
Common Internet users use 3D geo information web services like 
Google Maps [36] and Bing Maps [37]. Industrial software 
leaders like Autodesk develop special products for 3D city maps 
management like LandXplorer [38]. Joint community develops 

CityGML [39] standard for the modeling and exchange of 3D city 
and landscape models.  

3D models of urban buildings are the main content for 3D geo 
information systems. There are multiple ways for acquisition of 
these models. They can be created from sparse terrestrial photos 
[3, 40] automatically or manually using photogrammetric and 3D 
modeling software. These geometry modeling tools are usually 
coupled with Adobe Photoshop or similar photo editing software 
for texture editing. More automated approaches include 
processing of point clouds [4] and video streams [5] from land 
based mobile mapping systems. Aerial imagery and aerial LIDAR 
point clouds can also be used as source data [6]. 
3D model of urban building can be roughly divided in two parts – 
roof and facades. Roofs can be modeled from aerial imagery [7] 
or LIDAR point clouds using manual tools or by automatic planes 
fitting or template matching. Reconstruction of building facades is 
a more complicated task. But buildings facades frequently have 
structure and regularity. This semantic knowledge can help 
solving a number of problems arising in facade modeling, 
processing and interpretation. 
Facade textures are often occluded by foreground objects like 
vegetation, advertisement billboards, electrical cables, other 
buildings, bulging parts of the building, people, cars, etc. 
Occlusion areas can be segmented and reconstructed [8, 13] by 
comparing similar parts of the facade. Textures created from 
aerial views often lack quality and resolution on the lower floors 
of the building. If building’s floor were extracted from image 
these textures can be enhanced [9] by transferring texture 
information from higher floors to the lower. 
Detected facade elements, like windows and balconies, can be 
replaced by more detailed template 3D models from a database for 
overall visual quality improvement [10]. Knowledge of repeated 
texture parts and according geometry elements can be used to 
compress 3D model geometry and texture without visible loss of 
quality [11] that is required in web applications. Facade structure 
information can be also used for image-based geo locating [12], 
and other tasks. 



 
Figure 2: Scheme of the proposed algorithm. Green rectangles show data flow. Blue rounded rectangles show algorithm’s parts. 

 

The paper is organized as follows. Brief analysis of the related 
work is given in Section 2. We present a novel method for 
automatic determining of a set of non-overlapping grids of similar 
rectangular facade parts in a given single rectified image of urban 
building’s facade in Section 3. Results of our algorithm and 
comparison with two state-of-the-art methods [1, 2] results are 
given in Section 4. Finally, we give the conclusions and 
discussion in Section 5. 

2. RELATED WORK 

Repeatability and regularity are the main cues to deal with in 
facade interpretation tasks. They can be frequently met in man-
made environments, not only in urban scenes. The classic solution 
for extraction of regularity from a single image of a plane object 
without perspective distortions is analysis of autocorrelation 
function peaks [19]. This approach treats image globally and 
works only if regularity is strict, occupies large part of image and 
there are almost no occlusions. 
To deal with near-regular textures, perspective distortions and 
partial occlusions sparse set of image patches can be analyzed. 
These patches can be sampled randomly [20] or chosen by interest 
point [1] or rectangles detector [8]. Similar patches can be 
grouped together to fit homography [12], grid [8, 22], near-regular 
lattice [1, 20] or more complex models [2]. Patches are compared 
using metrics like SSD (sum of squared distances) [21] or NCC 
(normalized cross-correlation) [1, 22], or by matching descriptors 
like SIFT [12]. Depending on the complexity of model it can be 
estimated using Hough transform [23], RANSAC [12], iterative 
lattice spreading [1] or MRF (Markov random field) optimization 
[8]. These approaches have shown good results on a variety of 
images. Due to general problem formulation and using only small 
local patches for analysis results of these algorithms dramatically 
deteriorate on facades with complex look of similar parts, for 
example older buildings, several regular grids, large occlusions. 
Approaches, mentioned above do not focus on facade images 
particularly. A group of methods aims to detect windows, which 
frequently form the facade structure. This can be done by training 
Viola-Jones like detector using Haar features and SVM ([24] or 
AdaBoost [25]. Windows differ greatly from each other, thus 
these approaches work acceptably for  small databases of similar 
images. To deal with this problem incremental learning 
approaches were suggested [26], but they require user interaction. 

Heuristic approaches make use of similarity of windows corners 
[27] and presence of gradients on windows perimeter [28]. 
Akaike’s information criterion [27] or minimum description 
length [2] can be used to consider rows and columns regularities. 
Windows detection can be also formulated as optimal labeling 
problem [29] or as problem of finding optimal non-overlapping 
subset or rectangles [30]. Current windows detection results do 
not allow using them as final result. But detected windows can be 
used as lower level information for more intelligent algorithms, 
which will take regularities into account. General semantic image 
segmentation [31] and wall area extraction [32] results are also 
too far from desirable. 

State-of-the-art algorithms in automatic facade interpretation try 
to describe input rectified facade image as a higher level model. 
This model can be presented as partition of facade image into 
floors, tiles, windows, etc. More generally this partition can be 
described as grammar inference [9, 33]. The choice of grammar 
rules (for example vertical or horizontal splits) and their 
parameters (coordinates of splits) can be done by reversible jump 
Markov Chain Monte Carlo (rjMCMC) sampling [33] and 
comparing neighboring candidates, for example, using mutual 
information and edges inside and between candidate patches [9]. 
Metric information can also reduce parameter space [9]. This is 
one of the most promising approaches, but current results can 
hardly handle occlusions and strongly depend on the grammar 
rules formulation and inference criteria. 

3. PROPOSED METHOD 

We take rectified image of building’s facade as input. In 
assumption of plane facade, rectified image (Figures 3, 4) 
compensates all projective distortions. This image can be acquired 
directly from the already created 3D model as its texture or from 
input photo. The latter can be done by either manually selecting 
four points in photo, which correspond to a rectangle in the 3D 
scene, or by automatic algorithms [14], which find lines in image 
and group them according to vanishing points. 

Our aim was to develop algorithm which would work properly on 
a wide variety of rectified facade images with occlusions. Thus it 
should use not very strict model. We have chosen a set of non-
overlapping grids of similar rectangular image parts (Figure 1) as 
a simple and flexible model, which describes the absolute 
majority of urban buildings. Grid lines are parallel to image axes.  



Thus each grid is described by 6 parameters: 

(��, ��) – � and � coordinates of the top left corner of the grid, 

(	�, 	�) – cells size, 
(
��	, ��
���	) – number of rows and columns in the grid. 
The scheme of the proposed algorithm is shown in Figure 2. We 
find rectangles in input image (Section 3.1). We choose the most 
frequent distances between them as possible grid cells size 
(	�, 	�). In assumption that some of the rectangles are windows 
we remember their centers as possible grid cells centers. In 
combination with grid cell size this information reduces number 
of possible (��, ��) values. Thus we can significantly reduce the 
total number of grids for further analysis (Section 3.2). We 
sequentially choose the best grid non-overlapping with already 
extracted grids considering neighboring cells similarity, cells 
symmetry and existence of rectangle in the middle of cells 
(Section 3.3). Due to sampling and grid quality constraints some 
grids can be missed. We search for additional grids with cells, 
which are similar to already extracted grids (Section 3.4). We than 
expand extracted grids using weaker thresholds to handle 
occlusions (Section 3.5). Algorithm’s stages are described in 
details below. 

 
Figure 3: Input image. 

 

 
Figure 4: Rectified image. 

 

3.1 Rectangles extraction 
Existing approaches like Hough transform [34] can be used for 
extraction of rectangles with sides parallel to image sides. But we 
can extract even better rectangles. We build image pyramid by 
performing image downsampling with factor 2 and factor 4. We 
perform separate vertical and horizontal edge detection for each 
image in the pyramid by using Sobel operator. Pixel in the 
original image is labeled as edge pixel only if it is edge pixel in all 
the images of image pyramid. This approach filters out small and 
noisy edges, including undesirable edges between regular 
structures like wall bricks (Figure 5). 

 

 
Figure 5: Extracted vertical (red) and horizontal (green) edges 
applied only to original resolution (top) and applied to image 

pyramid (bottom). 
 

If pixel has enough horizontal edges in its right neighborhood and 
enough vertical edges in its bottom neighborhood, it is labeled as 
top left corner candidate pixel. Other three corners types can be 
processed in the same way. We iterate through all pairs of corners. 
If this pair can form a rectangle, i.e. corners lie on the same 
horizontal or vertical line, and have proper type (for example, are 
“top left” and “bottom left” corner accordingly), the distance 
between the corners is stored. There are about ten thousand of 
such corners in current example. We can then perform exhaustive 
search of rectangles with selected corners and sizes, which form 
the resulting set of rectangles (Figure 6). There are about thousand 
rectangles in current example. 

 
Figure 6: Some of the extracted rectangles. 

 

3.2 Extraction of candidates for cells size and 
center 
We compare each pair of image areas corresponding to rectangles 
with equal sizes using normalized cross-correlation (NCC) and 
store the distances between them if NCC value is large enough. 
The most frequent distances are selected as candidates for cells 
sizes (Figure 7). 



 
Figure 7: Extracted most frequent distances between rectangles. 

 
Resulting grids are naturally looking if its cells have facade 
element, for example, a window, in their center. Such centering of 
grids is not obligatory, but it reduces possible grids locations and 
avoids losing of a single side row or column near image bounds 
due to large grid shift. 

3.3 Greedy iterative choice of best grids 
The number of grids with previously determined sizes and centers 
can be analyzed exhaustively. Grid quality � is computed as 
follows: 

� = (� ∗ �)��� ∑ ∑ ��,��
���

 
��� , 

Where � is the number of rows in the grid, � is the number of 
columns in the grid, !� = -0.8 is a regularizing parameter that 
penalties too small grids and ��,� is quality measure for cell ��,�: 

��,� = "#�#
$
#!�%��,� , ����,�& + "#�#�#
$
#!�%��,� , ��,���& +
"���(!
�%��,�& + )$	*(�!%��,�&. 

"#�#
$
#!�%��,� , �+,,& is similarity measure between cells ��,� and 
�+,,. It is equal to NCC of corresponding image patches if it is 
larger than threshold !-, or -!- otherwise. "���(!
�%��,�& is ��,�  
cell’s measure of symmetry along horizontal direction. It is equal 
to NCC of left and right parts of the cell if it is larger than 
threshold !-, or -!- otherwise. )$	*(�!%��,�& is equal to !- if it 
there is a rect inside ��,� cell and -!- otherwise. We took !- = 0.4 
in all of our experiments. Thresholds !� and !- were selected 
empirically. One can vary thresholds values in parts cell quality 
terms. 

We sequentially choose the best grid that does not overlap already 
extracted grids (Figure 8). We stop when new grid quality is much 
lower than the quality of the best grid. 

3.4 Search for additional grids 
In some cases some grids are missed. So we perform a search for 
additional grids (Figures 10, 12). We make an assumption, that 
they are similar to already extracted grid. We compute median 
cell for each already extracted grid and correlate it with the part of 
the image not covered by grids. If the maximum of correlation 
map is relatively large we start a new grid with the center in the 
point of this maximum. We iterate this algorithm until no new 
grids can be found. 

3.5 Grids expansion 
Extracted grids do not usually spread over the occluded regions. 
For each grid we analyze four grids which are created from the 
original grid by adding single row or column at its side. If this 
grid does not intersect other grids and new cells are similar to 
their neighbors with a lower threshold, then we replace original 
grid with the expanded one (Figures 9, 11, 13, 14). We apply this 
algorithm several times. First it is applied after best grids are 

chosen to join partly occluded cells to them before searching for 
additional grids (Figure 9). Then it is applied after any new 
additional grid has been found (Figures 11, 13). Finally it is 
applied with extremely low threshold at the very end to recover 
much occluded cells (Figure 14). 

 
Figure 8: Best grid. 

 

 
Figure 9: Expansion of best grid. 

 

 
Figure 10: Start of additional grid. 

 

 
Figure 11: Expansion of additional grid. 



Figure 12: Starting another additional grid.
 

Figure 13: Expansion of additional grid.
 

Figure 14: Final expansion to occluded areas.
 

4. EVALUATION 

4.1 Database 
Unfortunately, there is neither conventional metrology nor at least 
image database for testing and comparison of facade interpretation 
algorithms. We have chosen 25 images from 
Vienna [15], eTRIMS Image Database [16], 
Database [17], CGTextures.com [18] web portal, and our own 
photos. Thought it is a small database, but it is representative, 
including images of old and modern architecture, built of various 
materials, with different numbers of floors and tiles,
regularities types, taken under various lighting conditions. All 
images were manually rectified. 

4.2 Competitors 
Problem statement notably differs among various scientific 
papers. We have chosen [1] as a modern representative
algorithms for recovering general regularities. It is based on 
interest points extraction and comparison. Similar shifts between 
similar points are stored. Frequent shifts become hypotheses for 
starting lattice size. Lattice is build iteratively by adding new 

 
Starting another additional grid. 

 
Expansion of additional grid. 

 
Final expansion to occluded areas. 
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algorithms. We have chosen 25 images from Facade Data Base 
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nodes, which are similar to existing ones and met lattice size 
condition. Some parts of this algorithms inspired e
candidates for cells sizes and center

Algorithm [2] represents the trend of using more complex model 
for facade description as a linear combination of axis parallel 
basis translations and the appropriate coefficients
principle for regularization. This algorithm extracts SIFT features 
and get the pairs of similar features. Best parameters of the model 
move similar points to each other.

4.3 Grid cells sizes extraction evaluation
Competitor methods do not try to center grids
windows, thus they can lose some rows or columns. We evaluate 
grids location and number of cells in Section 4.4. In this section
we evaluate only the results of cells sizes extraction. The 
proposed algorithm finds right grids cells sizes among 10 most 
frequent steps for all images in test database. But some of proper 
grids are missed in the final result. We consider result of 
algorithm right if there is a grid with proper cells size in the final 
set of grids. Results of grids steps extraction evaluation are shown 
in Figure 15. 

Figure 15: Grid cells size extraction evaluation results.
 

4.4 Evaluation of percentage of correctly 
extracted similar elements
We consider extracted grid to be correct if it has visually similar 
cells, which cannot be divided further, and has right number of 
rows and columns. Local shifts of grids are not taken into account, 
because it is not vital for f
information, for instance, for performing texture completion. But 
these shifts can influence the number of rows and columns in the 
extracted grid. Total number of cells in each image is known. For 
evaluation we can count ratio of number of correctly extracted 
cells to total number of cells (see Figure 16). The results are 
shown in Figure 17. We do not provide comparison to [2], 
because it requires manual setting of starting point for grid 
positioning. 
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Grid cells size extraction evaluation results. 

Evaluation of percentage of correctly 
extracted similar elements 
We consider extracted grid to be correct if it has visually similar 
cells, which cannot be divided further, and has right number of 
rows and columns. Local shifts of grids are not taken into account, 
because it is not vital for further processing of extracted 
information, for instance, for performing texture completion. But 
these shifts can influence the number of rows and columns in the 
extracted grid. Total number of cells in each image is known. For 
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because it requires manual setting of starting point for grid 



Figure 16: Example of [1] results. Ground truth grid contains 15 
cells; this grid contains only 12 cells. It means that 80% of cells 

were detected correctly.
 

Figure 17: Evaluation of percentage of correctly extracted similar 
elements. 

 

5. CONCLUSIONS AND DISCUSSION

We have proposed a novel fully automatic algorithm for 
extraction of information about repeatability of similar rectangular 
image patches from a single rectified image of urban building’s 
facade. Comparison with two competing algorithms showed 
advantages of our method. 
This can be first of all explained by focusing only on rectified 
facade images, but not a general class of images with more 
complex repeatability models and image distortions. In contrast to 
sophisticated grammar-based models we have introduced a simple 
model for facade description – a set of non
which can describe the majority of buildings facades. Proposed 
model quality measure incorporates empirical knowledge about 
building’s facade, including similarity between neighboring cells, 
horizontal grid symmetry and existence of rectangle in the center 
of each cell. 
We make use of analyzing rectangles, which can be frequently 
met in facade images and showed to be more robust than feature 
points or random patches. 
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were detected correctly. 
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We reduce possible number of
most frequent distances between extracted rectangles. Rectangles 
positions give us candidates for possible grid position. Due to 
such sampling of parameters space we can use exhaustive search 
for best grids. The proposed m
lowering thresholds for grid quality in grid spreading process.
Though current results are promising (75% of cells are extracted 
correctly) there are still some problems left. Due to iterative 
greedy choice of best grids some
occlusions are handled. Also a grid divided by another grid is 
considered as two separate grids. Global optimization formulation 
could do better. Rectangles are rather robust and easy to find, but 
additional detection of windo
techniques, can improve the overall robustness. We assume facade 
and facade elements to be almost flat. B
deeply sunken windows requires 3D analysis [35]. Non
overlapping grids model is enough for texture c
compression tasks. But it can be enhanced by adding hierarchy 
and more complex models, for example, repeated pairs of 
elements. Higher level semantic information could be also 
extracted for more intelligent tasks.
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