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Abstract 
In general case noise means unwanted signal of different nature. 
In computer graphics and image synthesis term “noise” is used to 
call a pseudo-random function which is generally used to generate 
procedural textures. Perlin noise is one of the most well-known 
noise functions[1]. 
Noise is generally used to create procedural textures, such as 
marble, wood, cloud textures. This requires noise to be a function 
of two parameters, which are texture coordinates. 
However, if we extend noise function to three or four dimensions, 
we would get a powerful function which would allow us to 
modify geometry, generate procedural volumetric effects and 
vortex fields for particle simulations. 
This paper shows how to compute noise function on GPU and 
how to use it in advanced real-time visual effects. 
Keywords: Noise, Perlin noise, GPU, landscape, fire, volumetric 
effects, ray marching, particle simulation, vortex fields. 

1. INTRODUCTION 

This paper shows how GPU can be used for noise computation – a 
problem which is known to be very complex and thus expensive. 
Noise is commonly used to generate procedural textures and is 
rarely used to generate textures in real time due to complexity of 
computations. 
However, due to its massively parallel architecture, GPU allows 
to compute several instances of noise function simultaneously, 
making it possible to compute noise functions in real-time. And 
not only two-dimensional functions can be computed, but three-
dimensional and four-dimensional, opening up new possibilities 
for noise usage. 
Originally noise (in that sense in which we consider it) was 
invented by Ken Perlin[2], who was searching for a procedural 
way of creating three-dimensional textures (i.e. volumes filled 
with texture). His goal was to be able to apply textures onto 
arbitrary objects without projecting these objects onto two-
dimensional surfaces (traditional textures). His idea was to use 
object’s coordinates as texture coordinates into a volume filled 
with texture. However, Perlin realized that such texture would 
require a significant amount of data, so he was thinking of a 
possibility to generate such a texture procedurally. This is how he 
came to a function which is now commonly called Perlin noise. 
One strong restriction for the desired function was that, in 
distinction to a natural noise, noise function should always return 
the same value if sampled with same coordinates. It means that it 
should be not truly random, but pseudorandom instead. 
After some research Perlin came to a function known as a lattice 
noise with gradient variety. This function used a hypercubic grid 

with each grid knot being assigned its own pseudorandom 
gradient vector (Figure 1, a). 
 
 
 
 
 
 
 

a                                                      b 
Figure 1: a. Grid points with assigned gradient vectors, 

b. Vectors to hypercube vertices 
Given coordinates x, y, z this function computes vectors from 
point defined by these coordinates to vertices of the hypercube 
where this point is situated (Figure 1, b). 
Finally Perlin noise value in point x, y, z is computed as an 
interpolation of gradients – dot products between gradient vectors 
in hypercube vertices and vectors from given point to these 
vertices. Generally this cubic polynomial is used: 

3x2 – 2x3 
Turbulence function is used to sum up several frequencies of 
noise with corresponding weights to achieve desired look of noise 
function (Figure 3). 
Turbulence function in its turn can be used in more complicated 
expressions to further modify noise look. This allows to create 
textures which would look like clouds, marble, wood or flame. 

 
Figure 3: Putting together different noise frequencies 

 
Later Perlin’s function was used to generate not only volumetric 
textures, but also two-dimensional images – fractal structure of 
noise and possibility to mix different noise frequencies allowed to 
create natural-looking patterns (wood, marble, different stones, 
clouds)[5]. A bunch of noise functions were obtained from Perlin 
noise. Ken Perlin himself suggested a number of valuable 
improvements to his function. First improvement was to use 



simplex grid[3] instead of hypercube grid (it allowed a linear 
growth of computations instead of quadric growth when going to 
higher noise dimensions), and the second one was to use an 
interpolation curve of degree five instead of interpolation curve of 
degree three (this guaranteed noise smoothness). 
However, even with these improvements, Perlin noise remained to 
be very expensive to compute. For a single noise sample, some 
amount of pseudorandom numbers should be generated, gradients 
computed and interpolated. Don’t forget that you commonly need 
to compute several noise frequencies to generate a desired look of 
noise function. 
However, with modern GPUs it becomes possible to compute 
noise functions in real-time. This gives a lot of advantages and 
allows to use full power of noise functions. Now it is possible to 
sample three-dimensional volumetric textures instead of 
precomputing and storing them somewhere, it is possible to 
compute vector fields using noise (this means three times more 
computations per sample, since you want to compute a three-
dimensional vector), it is even possible to compute noise which 
dynamically changes (four-dimensional noise, where fourth 
dimension stands for time). 
This paper is divided into four chapters. First chapter covers the 
details of noise computation implementation on GPU, talking 
about general idea of noise, noise computation and GPU-specific 
optimization tricks. Second part talks about using noise to modify 
geometry, which allows dynamically adding details to low-poly 
meshes, such as landscapes. Finally, third and fourth chapters talk 
about fire effect as an example of using noise to generate 
volumetric effects. 

2. COMPUTING NOISE 

Let’s consider implementing simplex noise on GPU. Simplex 
noise (Perlin noise which is computed on a simplex grid instead 
of hypercube grid) is the most suitable for us since its 
computational complexity scales linearly with growth of number 
of dimensions. In general simplex is a figure which has minimum 
vertices in a given space, can’t be represented in space with lesser 
number of dimensions, and can be replicated to pitch the entire 
space. In two-dimensional space it is a triangle, in three-
dimensional space it is a tetrahedron. It is hard to imagine what it 
would look like in four-dimensional space, but at least it is 
guaranteed that this figure would have only 5 vertices instead of 
16 vertices in a case of 4D-hypercube. 
Translating simplex Perlin noise computation algorithm to GPU is 
pretty straightforward, since modern shader model (shader model 
4.0 which is supported in DirectX 10) is very similar to what 
traditional programming languages have in terms of available 
operations. 
Let’s consider two basic routines. First one is a routine which 
computes a simplex in a hypercube in which a given point is 
situated. This routine uses magnitude sorting. This is how this 
routine can look like in three-dimensional case (the code is 
written using HLSL 4.0): 
 
void Simplex3D( const in float3 P, out 
float3 simplex[4] ) 
{ 
    float3 T = P.xzy >= P.yxz; 
    simplex[0] = 0; 
    simplex[1] = T.xzy > T.yxz; 

    simplex[2] = T.yxz <= T.xzy; 
    simplex[3] = 1; 
} 

 

As an output this routine computes four vertices which are 
vertices of a simplex (tetrahedron) in which given point is 
situated. These vertices are later used to compute gradients and 
interpolate them. 
But first gradient vectors should be associated with vertices of 
this simplex. This is commonly done with a hash function which 
computes an index to a table of precomputed gradient vectors. On 
CPU this hash function is implemented with a number of 
multiplications and taking a remainder of division on some big 
prime number. 
However, on GPU this approach is working quite slow due to a 
big number of “taking remainder” operations which are quite slow 
even on modern GPUs. The idea is to use so-called permutation 
textures - sets of precomputed hash values. You just need to come 
up with a reasonable function of picking a hash value from this 
texture. Possible solution can look like this: 
 
int Hash( float3 P ) 
{ 
    return PermTexture.Load(  

int3(P.xy, 0) ).r ^ PermTexture.Load(  
int3( P.z, 0, 0 ) ).r; 

} 

 
Note that Load()’s are used instead of regular Sample() 
instructions. This is done in order not to normalize simplex 
coordinates and thus simplify computations. PermTexture in this 
example is a UINT texture, which means that it contains unsigned 
integer values, which are indices to a look-up table of gradient 
vectors. 
Look-up table of gradient vectors can contain an arbitrary number 
of different vectors, however, in one of his researches Perlin 
found that 12 different vectors (in 3D case) would be enough to 
generate good noise patterns. He suggested to take a set of vectors 
directed to middles of the edges of hypercube (three-dimensional 
cube in 3D case). These vectors can be stored in a constant buffer 
for a shader to have the fastest access to this look-up table. 
All we need to do after finding gradient vectors for a given 
simplex is to compute dot products and sum them up with a 
selected polynomial function (for his simplex noise Perlin used a 
degree of five function). 
Turbulence function commonly looks like this: 
 
float Turbulence3D( float3 p ) 
{ 
    float res = 0; 
 
    for ( int i = 0; i<5; i++, p *= 2 ) 

res += FrequencyWeights[i] *  
Snoise3D( p ); 

 
    return res; 
} 

 



This function is later used in all algorithms which are working 
with noise. 
Similar routines can be written for 4D noise and for 3D flow noise 
(which is a simple 3D noise but with gradient vectors rotated with 
time) 

3. ADDING DETAIL TO GEOMETRY 

One of new usecases for noise is adding detail to geometry. This 
task perfectly fits to landscape rendering. In most cases 
landscapes are represented as big regular meshes which are made 
of big triangles. Different techniques are used to hide the lack of 
detail (multitexturing with a small detail texture, relief mapping), 
but these techniques can do nothing without the fact that the mesh 
is actually coarse – user still sees edgy silhouettes. 
The cleanest solution would be to modify geometry itself – to 
tessellate it[6] to certain level and displace tessellated polygons 
with some function which would look very similar to landscape 
microrelief (Figure 4). 
 

 
Figure 4: Adding detail to landscape 

 
Why using Perlin noise function as such function? Using 
precomputed detail heightmaps would be good alternative. 
However, with noise you can generate procedural textures with 
much higher resolution than hardware is capable of storing, so 
you are saving memory and bandwidth. One may argue that using 
noise saves memory but increases computations, but the common 
rule is that in modern GPUs computational power grows much 
faster than bandwidth, so it much more favorable for an 
application to be computations-bound than to be memory-bound. 
The second reason is that you can tweak Perlin noise (playing 
with frequency weights in turbulence function and with 
expressions in which turbulence function is used) to achieve a 
desired look and to make your microrelief look really natural. 
This nice property of Perlin noise is used in other effects as well. 
And the third advantage is an ability to throw away high-
frequency parts of turbulence function when you don’t need them. 
That is, when you are rendering a landscape near the viewer, you 
can tessellate with higher tessellation factor and use more 
frequencies in turbulence function. But when you are rendering 
triangles which are far away from the viewer, you don’t need to 
add that much of details and you can throw away those 
frequencies which viewer cannot see from a given distance. 
Described approach was implemented and, given the possibility to 
tweak tessellation parameters, showed acceptable speed on a 

modern GPU – approximately 100 frames per second (GeForce 
8800GT was used for testing). 

4. DYNAMIC VOLUMETRIC EFFECTS 

Commonly in real-time graphics effects as fire, explosions and 
smoke are represented as sets of slices blended together. Each 
slide contains its portion of represented effect. Picture on each 
slide can be animated to create a look of dynamically changing 
effect. 
This approach is quite easy to implement, however, when such 
effect starts to interact with other objects in a scene, such artifacts 
as banding appear, unveiling the flaky nature of the effect. 
Solution to this problem is representing such effects as truly 
volumetric effects, which can be evaluated in every point inside 
the volume, without being bound to any slices. To create dynamic  
truly volumetric effects we need either to store a four-dimensional 
texture in memory (which would require enormous amount of 
space) or compute this texture in real-time, for which Perlin noise 
is most suitable. 
Basic idea for a volumetric fire effect is to use noise to generate 
vertical axis-aligned vertex field and distort some basic shape 
(Figure 5) with this field. This field can dynamically change if we 
use four-dimensional noise and treat fourth component as time. 
 

 
Figure 5: Basic fire shape 

 
Basic fire shape is the main instrument of artist control for the 
described effect. Shape and color can be changed to achieve 
desired fire look. 
Basic fire unit (Figure 6) is generated by revolving a fire shape 
around vertical axis. 

 
Figure 6: Basic fire unit 

 



This shape is than distorted with vector field (Figure 7) generated 
using a 4D simplex noise (where fourth component stands for 
time). Rendering is done by ray marching a unit which contains 
fire shape and offsetting vertical position of each step by noise 
value. Displaced position is used to fetch a color from a revolved 
fire shape. All colors along a single ray are integrated to compute 
a final pixel color. 
 

 
Figure 7: Distorting fire unit with noise 

 
Varying weights of different frequencies in a turbulence function 
is another way of artist control. Tweaking these weights allows 
achieving different flame looks, from burning match to burning 
house. 
Rendering speed of this approach depends only on the number of 
pixels occupied by described effect (this number equals to a 
number of rays traced). For different cases implementation of this 
effect showed from 20 to 40 frames per second. 

4.1 Avoiding banding artifacts 
Ray marching is performed with equal steps, so it is good to apply 
some jittering to initial positions of rays to avoid flaky look of the 
effect. 
The main advantage of described effect is that it is defined in the 
whole entire volume and is not bound to any slices. That means 
that this effect can be evaluated at every point inside the unit 
volume. This is very useful when this effect is intersected with 
some obstacle (a case when traditional effects show up their flaky 
nature). Adaptive ray marching (Figure 8) can be used to avoid 
banding artifacts. 

 
Figure 8: Adaptive ray marching 

 
The idea of this approach is, when a next ray marching step is 
detected to be inside the occlude, place it to the occluder’s border 
and integrate this sample with the appropriate weight. This would 
allow avoiding banding artifacts when fire unit is intersected with 
an arbitrary shape. 
However, this would not allow making fire behave as if 
something was put inside of it (fire would not flow around the 

obstacle). The next chapter describes how to add physics 
simulations to this volumetric effect. 

5. PARTICLE SYSTEMS 

The idea of this approach is to represent a fire effect as a particle 
system. Each particle is simulated using fluid dynamics (this can 
be done on GPU using a stream-out which is available in DirectX 
10) and occluders are taken into account when moving particles 
(Figure 9). 
 

 
Figure 9: Particle trajectories 

 
Particle system can be further voxelized in order to use ray 
marching to render this particle system (which commonly appears 
to be faster than directly rendering the entire particle system). 
Voxel grid can be frustum-aligned in order to make ray marching 
even more fast. 
This approach is good for modeling a rough fire shape – it 
guarantees a physical correctness of the resulting effect. However, 
this approach would lack a distinctive whirligig nature of 
particles’ motion. 
The idea is to add this motion using Perlin noise. Noise can be 
used to generate vortex field, which is combined with particles’ 
velocities computed during fluid simulations stage (Figure 10). 

 
Figure 10: Combining trajectories with procedurally generated 

vortex field 
 

Three samples of noise function are used to generate a single 
velocity vector in three-dimensional case. At each time step for 
each particle such vector is computed, and particle is advanced 



ingenerated direction. Flow noise can be used to modify this 
vortex field by rotating gradient vectors. 
Rendering speed of this approach doesn’t depend on screen size 
of the effect and is only limited by a number of particles being 
simulated. For ~200 000 particles implementation of this effect 
showed 30 frames per second (GeForce 8800GT was used for 
testing). 

6. CONCLUSION 

Noise is a powerful function which allows generating not only 
procedural textures, but different patterns used in different 
applications. With modern GPUs it became possible to evaluate 
noise functions at real-time and use procedural patterns to 
generate new and improve existing effects (make them look more 
realistic and full of details). 
Implementing noise in real time opens up a huge space for 
experimenting with using noise for different applications. Some 
of experiments performed by authors were described in this 
article, but there are still a lot of possibilities for applying noise in 
different fields of computer graphics. Keep thinking and 
experimenting on it! 
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