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Abstract 
In this paper we propose a confidence measure for block-based 
motion vector field. The measure is calculated as an average of 
two a posteriori estimates which reflect various aspects of MVF 
accuracy: motion-compensated interframe difference distribution 
and motion vectors distribution. Experimental results show that 
the proposed measure outperforms its contemporary counterpart 
while demanding less information about the motion estimation 
process. 
Keywords: confidence measure, motion estimation, motion vector 
field. 

1. INTRODUCTION 

Motion information is used in most contemporary video 
processing algorithms, as it allows getting benefit from video 
redundancy, thereby enhancing the algorithm performance. Since 
ground-truth Motion Vector Field (MVF) is usually not available, 
a Motion Estimation (ME) algorithm is applied to calculate the 
motion between video frames. The correspondence of the 
calculated motion to a ground-truth motion is one of the key 
issues, as the utilization of wrong motion information (e.g. caused 
by aperture problem or occlusion [7]) can lead to artifacts in the 
areas of the processed video, where this information is used. 
Therefore, certain objective criterion is needed to express the 
correspondence.  
The confidence measure is such a criterion. It can be treated as a 
probability that an estimated Motion Vector (MV) is equal to a 
ground-truth MV. The confidence measure is a universal means to 
control MVF correctness, as it can be applied in two scenarios: 

• the measure can be incorporated directly into the 
conventional ME algorithm to detect wrongly estimated 
MVs. A special postprocessing is  then applied to these 
MVs to improve their accuracy; 

• the measure can be a part of video postprocessing 
algorithm (e.g. frame rate up-conversion or 
deinterlacing) executed on the decoder side, where the 
information about the ME process is inaccessible. In 
this case a separate branch of the algorithm can be 
provided to handle the processing of areas, for which no 
reliable motion information is available. 

In this paper we propose a confidence measure for block-based 
MVF, which takes different spatial and temporal cues into 
account. The results of the comparison with the method proposed 
by Patras et al. [1] justify the superiority of the proposed method. 
The rest of the paper is organized as follows. In Section 2 a 
review of the related work is given. In Section 3 the proposed 
algorithm is described. Experimental results are presented in 
Section 4. Section 5 concludes the paper. 

2. RELATED WORK 

There are two major approaches [1] to a confidence measure 
calculation. The first is to estimate a priori confidence to a MV 
before its explicit calculation. Generally, such methods take 
certain spatial cues into account, e.g. spatial luminance 
derivatives [3], [4]. The basic idea is to determine the areas where 
the aperture problem can arise. This information can further be 
used to decide whether ME can be confidently applied to certain 
area, or not [2]. The major drawback of this technique is a small 
application field, as the approach is almost useless when a 
confidence to an estimated MVF is to be obtained. 
The second approach assumes the calculation of a posteriori 
confidence to already estimated MVF. In this case not only the 
spatial cues can be used, but proper MVF modeling and analysis 
as well. The methods following this approach can be divided into 
two groups according to the MVF structure. The first group is 
formed by the methods intended for optical flow confidence 
estimation [5], [6]. The second group consists of the algorithms 
estimating confidence to a block MVF, e.g. the MVF calculated 
by block matching ME. These algorithms are of particular 
interest, since block matching ME is widely used in conventional 
video processing systems. In [7] To et al. proposed a confidence 
measure based on frame phase information, thus limiting the 
application field of the method within cases where phase 
correlation ME is used. Lundmark et al. [8] used the weighted 
sum of Motion-Compensated Interframe Difference (MCID) to 
obtain the confidence value. This algorithm is applicable in the 
case of occlusion, but in the case of aperture problem it fails. 
Recently Patras et al. [1] introduced a confidence measure in the 
probabilistic framework. They proved that the block-based ME 
minimizing the Sum of Absolute Differences (SAD) is equivalent 
to a maximum likelihood estimator of MVs, assuming that the 
MCID follows the Laplacian distribution. Considering candidate 
motion vectors for each block to be known, a posteriori 
probability of calculated MV being equal to a ground-truth MV is 
estimated. However, the dependence on the candidate set is a 
disadvantage, since: 

• all the candidates must be known. Therefore, the 
measure can be calculated only while performing ME. 
This fact impedes the application of the measure in 
video processing on the decoder side, as candidate 
motion vectors are unavailable in a video stream; 

• contemporary block matching methods [9] use various 
MVF consistency cues to reduce the candidate set, thus 
gaining efficiency. However, this can lead to erroneous 
confidence estimates. For instance, ME algorithm can 
wrongly construct a candidate set of one MV, 
nevertheless Patras et al. measure will assign a unity 
(i.e. highest) confidence to the vector because there are 
no other vectors in the set. Thereby, the measure can be 



applied only to pattern search ME methods, e.g. full-
search. 

3. PROPOSED CONFIDENCE MEASURE 

The proposed confidence measure is derived in the following 
way. Two a posteriori estimates of MV confidence are obtained. 
The first estimate, , is based on MCID analysis. The 

second estimate, , takes MVF distribution into account. 
These estimates are combined, resulting in a confidence measure. 
Various schemes of estimates combination exist. Kittler et al. 

MCIDP

MVFP

[10] 
argued that in practice simple averaging often produces better 
results than more sound techniques do. From our experiments, we 
came to the same conclusion. So, the measure is calculated as: 
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The derivation of the estimates  and  is given in 
Sections 

MCIDP MVFP
3.1 and 3.2 respectively. 

3.1 MCID analysis 
As in [1], we consider the case where SAD is used as an error 
function for MV and assume that the MCID follows the Laplacian 
distribution with a zero mean: 
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where  is a MCID value of pixel ( )xI x  from block , B Bλ  is a 

parameter, specific to the block. The variance  of block 

MCID is linked with 

MCID
Bσ

Bλ  by the following expression: 
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Given the sample ( ){ }BxxI ∈  a maximum likelihood estimate of 

Bλ  can be derived as follows: 
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Thus, only the SAD value of the block MV is needed to obtain the 
estimate of Bλ .  

In [1] it was suggested that   depends on block luminance 

variance : the larger , the larger . The 

argumentation is as follows. If the value of  is low (uniform 
block), and a good reference block was found by ME, the 

variance of motion-compensated difference between the current 

and the reference blocks  will also be low. On the 

contrary, it is quite natural to suppose that for large  values 

(e.g. block containing fine texture) the value of  will be 
large as no perfect match is usually possible in such cases. We 
approximate this dependence with a linear function: 

MCID
Bσ

I
BσI

Bσ MCID
Bσ

I
Bσ

MCID
Bσ

βα + 00

I
Bσ

MCID
Bσ

I
B

MCID
B σσ ⋅= , (5)  

where 0α  and 0β  are constants specific for each video frame. 

The dependence between I
Bσ d M

Bσ otted for one frame 
of Fly test video (test videos are described in Section 

CID , an  pl
4) is 

presented in Figure 1 together with the approximant function. 
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Figure 1: The dependence of  MCID
Bσ  on I

Bσ  for Fly frame 
and the correspondent linear approximant. 

Substituting (3) and (4) into (5), we derive: 
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where ( ) ( )TT
00 ,

2
1, βαβα ≡ . 

Assuming that ( )BSAD  and  are known for each block  
of the frame, 

I
Bσ B

α  and β  are calculated using linear least squares 
method, which leads to the following estimates: 
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where  is the number of blocks in a frame. n



To obtain a  value for a block , an estimate of its SAD 
value is calculated: 
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3.2 MVF analysis 
The estimate  reflects the confidence to a MV based on the 
MVF distribution analysis. Here we utilize the following 
heuristics. If the block MV is close in some sense to the MVs of 
adjacent blocks, it is likely that the blocks correspond to a part of 
object, exhibiting uniform motion, so the confidence is assigned 
to the block depending on the size of the object part. On the 
contrary, if the block MV differs from adjacent blocks’ MVs, it 
can be a wrong vector. This cue leads to the following algorithm:  

MVFP

• cluster the MVF in some manner; 

• let BC  be the cluster which the block B  belongs to; 

then MVFP  is calculated as: 
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where  is a threshold, which value is chosen 
empirically. In our experiments the value was set to 
0.5% of the frame area. 

thresh

As it can be seen, the performance of this part of confidence 
estimation algorithm essentially depends on the clustering 
algorithm chosen. We employed a modification of an 
agglomerative hierarchical clustering algorithm [11] that 
maintains clusters’ spatial consistency. Such choice of the 
clustering algorithm (that will be discussed further) was driven by 
several reasons: 

• the number of clusters in a frame is a priori unknown; 

• the clusters on the output of the algorithm must be 
spatially consistent frame regions. 

The distance between blocks is introduced as the  distance 
between corresponding MVs: 

2L
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where ( )2,1BMV
C
 is the MV of block . The distance 

between clusters  and  is calculated as the mean distance 
between cluster elements (the so-called average linkage 
clustering): 
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Unlike conventional agglomerative hierarchical clustering, the 
proposed clustering algorithm at each step merges spatially 
adjacent clusters, distance between which is minimal. The 
merging process is stopped when the minimal distance between 
adjacent clusters exceeds a certain threshold. Empirically the 
threshold was set to the mean length of the frame MVs; thereby 

the clustering adapts to the motion activity in the frame. An 
example of MVF clustering for one frame of Fly test video is 
demonstrated in Figure 2; different clusters are painted with 
different colors. 

 
Figure 2: Clustered MVF of Fly frame. 

4. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed measure, we used a 
test set of two synthetically rendered video sequences, Fly and 
Tower, for which ground-truth MVF is available. These videos 
are in 576720×  resolution and consist of 151  frames. Full-
search ME algorithm ( 1616×  blocks were used, MVs were 
estimated with a quarter-pixel accuracy) was applied to these 
videos, resulting in MVFs that were further used to compare 
confidence measures. After that, two confidence estimation 
algorithms, the proposed one and the method by Patras et al. [1], 
were used to obtain the confidence measure values for these 
MVFs. Then, Spearman and Kendall rank correlation coefficients 
[12] were calculated between each of these measures and the 
ground-truth error score . This score is defined as: ΔGT

( ) ( ) 2BMVBMVGT GTFS −=Δ , (13)

where ( )BMVFS  is a MV of block , obtained by the full-

search ME, 

B
( )BMVGT  is a ground-truth MV of this block. 

The so-called Spearman’s rho ρ  and Kendall’s tau τ  are quite 
popular measures to evaluate the correspondence between 
different scores for the same group of objects. Thus, it can be 
determined how much the compared confidence measures 
correspond to the ground-truth error.  

Table I   
Comparison of median ρ  and τ  for the compared algorithms 

Video sequence 

Fly Tower 
Confidence 

measure 
algorithm median ρ  medianτ  median ρ  medianτ  

Proposed 0.3219 0.2867 0.5628 0.4631 

Patras  
et al. 0.2724 0.2388 0.4596 0.3491 



The results of the comparison of ρ  and τ  median values 
calculated for test videos are given in Table I. Plots of 
Spearman’s rho for  Fly  and  Tower  videos are presented in 
Figure 3 and Figure 4 respectively. The plots of Kendall’s tau are 
not given as the results of τ  comparison very closely follow 
those of ρ  comparison. As it can be seen, the proposed 
confidence measure outperforms Patras et al. measure, providing 
acceptable rank correlation with the ground-truth score. 
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