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Figure 1: Most similar vessels chosen from 300 datasets by objective weighting of automatically extracted shape features

Abstract

Within archaeology inconsistent documentation styles and classifi-
cation schemes have ever prevented the scientific work from being
comprehensible and reproducible. Now that the advantages of 3D
scanning technology become more and more evident, it is possi-
ble for the first time to exclude subjective influences and to make
new attempts for an overdue standardization. As a first step, we
show how morphological features can be extracted automatically
from 3D scanned pottery, including not only heights and diameters
but also ratios and other major properties such as handles and feet
for example. These features are then used to estimate the similarity
between arbitrary vessels. At first, we therefore propose similarity
metrics for different kinds of features. Afterwards the importance
of features is ranked by the gain ratio criterion from the well-known
C4.5 decision tree algorithm which is finally used to set the par-
ticular weights for the computation of the overall similarity. The
good query results obtained on Bronze Age material confirm our
presumption that the method is applicable in many other domains
too.

Keywords: archaeological pottery, shape analysis, mesh segmen-
tation, similarity metric, gain ratio.

1 Problem Statement

Archaeology is specifically a perception-based and comparative
science and so one of the major tasks in archaeological research
is the search for similar entities. This process usually includes
but is not limited to morphological analysis. Together with sec-
ondary attributes such as treatment, texture or material functional,
behavioural and finally chronological conclusions can be drawn.
Probably the most important group among findings is formed by
ceramic vessels. Besides from being the far biggest part of all arti-
facts, they also give good clues about the life and cults of their an-
cient manufacturers. Moreover, the special axially symmetric shape
of vessels makes them predestined for automatic analysis and the
induction of typologies.

Although there have already been many approaches towards a stan-
dardized classification process, none of them could prevail so far
[Whallon and Brown 1982; Adams and Adams 1991]. For the first
time, 3D range scanning technology allows for an objective repro-
duction of reality and for the acquisition and processing of incom-
parable greater quantities of data. Since classification in archaeol-
ogy is usually based on unstandardized manual drawings, the search
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for similar objects has always been biased by several human influ-
ences. For that reason, archaeologists always longed for methods
quantifying similarities more objectively and in particular making
the proceeding comprehensible and reproducible. As a first step,
in [Hörr et al. 2008a] we propose several non-photorealistic ren-
dering styles heading for uniform drawing conventions. We have
also shown that in the domain of pottery machine learning tech-
niques are very suitable for the reliable prediction of primary and
even secondary types solely on the basis of feature values, but also
for verification and refinement of existing typologies [Hörr et al.
2008b].

In the following, algorithms are presented that compute the most
relevant morphological features automatically from the 3D models
of axially symmetric vessels in order to accelerate data acquisition
even more. Section 2 is commenced by the computation of profiles,
the most important measures and their ratios. Later we present a
fast and straightforward algorithm to detect body extensions like
handles, lugs and feet. As well, we make proposals for the compu-
tation of a representative average profile which may serve for fur-
ther analysis. How the extracted features can be processed in user-
defined queries is the topic of section 3. There, similarity metrics
for numerical and nominal features are introduced and it is shown
that an objective weighting of features is possible by calculating
their importance using the gain ratio criterion from the C4.5 algo-
rithm [Quinlan 1993]. Section 4 is dedicated to some results and
general observations that may support the daily typological work
of archaeologists.

Related Work

During the past years there have been many new attempts towards
shape matching. These include, among others, topological ones
[Hilaga et al. 2001], skeleton-based ones [Brennecke and Isenberg
2004; Cornea et al. 2005], shape histograms [Ankerst et al. 1999]
and feature vectors [Bustos et al. 2005]. Almost all of them con-
sider similarity as a global measure and hence perform best on a
diversity of object classes. If however differences in detail are to be
discovered, most of them fail. Moreover, 3D scanned vessels do not
meet the requirements of the majority of existing algorithms. This
applies also for spectral analysis (e.g. [Reuter et al. 2007]), because
a uniform mesh topology as well as suitable boundary conditions
cannot be assured if for example parts of the surface, particularly
inner walls are missing. We therefore believe that for the special
domain of pottery a specific non-global feature-based approach is
much more flexible and convenient.

Gilboa et al. [2004] developed methods for deriving a vessel ty-
pology by comparing the profiles of rim sherds. They understand
similarity as the correlation of parametrizations of the profile curve.



However, this approach is suitable only to determine type mem-
bership and it fails if profiles of complete vessels are considered.
In [Saragusti et al. 2005] Fourier analysis is used to describe the
roughness and symmetry of horizontal cross sections of pots or
contours of handaxes. Kampel and Sablatnig [2007] apply clas-
sification rules established empirically by archaeological experts to
assign sherds to a certain vessel type, but it remains unclear what
the system’s contribution is, if the human’s typology is merely re-
produced and not questioned. Moreover, the presented rules are not
generalizable and tests were carried out only on very few sherds.

2 Feature Extraction

Whether wheel-thrown or handcrafted, throughout history the very
most vessels have been designed as rotational bodies. We take ad-
vantage of this special property by first aligning the vessels with
their estimated axis of rotation (a new symmetry-based algorithm
is presented in [Wagner 2007]) and then transforming them into a
cylindrical coordinate system where points are described in terms
of height h, radius r and angle ϕ . If the vessel is indeed totally
axially symmetric, r is constant with respect to a specified height
and the angle dimension becomes redundant. Therefore, archae-
ologists usually describe features of vessels only as features of a
certain representative half profile, although ancient pottery is often
distorted for reasons of manufacturing, burning and storing. Hence,
immediately the question arises how such a profile should look like
and how it is computed.

2.1 Fast Computation of Profiles

In general, profiles are computed by an intersection of the vessel
with half-planes whose borders are the axis of rotation. However,
doing this for a large number on triangular meshes is computation-
ally expensive. Therefore we propose a different approach which
is based on a discretized cylindrical mapping. We subdivide the
vertical axis (the height axis) into I and the angle axis into J inter-
vals resulting in an I × J 2D-grid around the axis of rotation. I is
chosen with respect to the object’s height so that each row of the
grid covers approximately 1-2 millimeters. For J it has turned out
that a resolution of one degree per column is far sufficient, so J is
constantly set to 360.

Now, each mesh vertex can be projected into exactly one of the cells
according to its h and ϕ coordinates. If its distance value r is greater
than the already stored one it is written to that cell. The storage
of only the maximum distance values is reasonable because for the
vessel’s shape analysis only the outer surface is of interest and since
multiple values are precluded, computation is much simplified. Fi-
nally a 2 1

2 -dimensional grid evolves where in the following rows
are called slices and columns are called profiles. The set of all dis-
tance values within a fixed slice is referred to as distance function
d(ϕ) of that slice (fig. 3(a)). This function is periodic and might
be partially undefined, if some cells are empty, e.g. due to missing
pieces of the vessel. In this case gaps are simply closed via linear
interpolation. As stated above, for a perfectly symmetric rotational
body the distance function is expected to be constant. In practice
however, due to distortion or imprecise alignment it changes to a
more a less sinusoidal oscillation. Moreover, if the surface is rough
or decorated, noise and small bumps appear. For further analysis
the distance function is slightly smoothed.

2.2 Measures, Ratios and Body Segments

In documentation of archaeological pottery, aside from the descrip-
tion of colour, material, burning and state of preservation the most
important geometric measures are denoted. These include the to-
tal height, the maximum diameter, the diameters of the base and

OP

CP
IP

MAX

BP

rim diameter

neck
diameter

greatest
diameter

base diameter

neck height

total height

NECK

SHOULDER

BELLY

Figure 2: Characteristic profile points and most important mea-
sures of a Bronze Age amphora.

the rim, and sometimes also the diameter of the neck. The diame-
ters are usually taken at characteristic points of the profile (fig. 2,
first described in [Birkhoff 1933]) such as points of vertical tan-
gency (MIN/MAX), corner points (CP), inflection points (IP) and
the base (BP) and orifice point (OP). Identifying those points on a
single profile is rather simple, especially if attachments have been
excluded before (see following section). For a more precise analy-
sis we compute best fitting circles among the corresponding char-
acteristic points on all profiles. This provides us results being more
independent from correct alignment as well as a measure of how
much the corresponding diameters vary (uniformity, cf. [Mara et al.
2004; Saragusti et al. 2005]).

The characteristic profile points also indicate the borders of the
body segments base, belly, shoulder, neck and rim. From that it
is easy to conclude to the composition of body segments. On our
material the shapes are limited to belly–rim (BR; simple bowls, por-
ringers, flat cups), belly–shoulder–rim (BSR; esp. double-cones)
and belly–shoulder–neck–rim (BSNR; amphorae, tureens, profiled
cups). To distinguish simple bowls from profiled bowls we also
introduced the special shape BRp. Our experiments have shown
that this semantic approach is much more suitable than a geomet-
ric curve matching of profiles, the comparison of the sequence of
characteristic profile points (the profile signature) or the mapping
of body segments to geometric primitives (e.g. [Rice 1987, 219]).

Since uniform scaling is usually irrelevant to the upper levels of
vessel typologies, i.e. size does not matter, instead of absolute mea-
sures in most cases some selected ratios of them are far more mean-
ingful. Some of the most important ones are

main index = 100 · greatest diameter
total height

,

rim index = 100 · rim diameter
greatest diameter

,

neck index = 100 · rim diameter−neck diameter
2 ·neck height

,

shoulder index = 100 · belly diameter−neck diameter
2 · shoulder height

,

base index = 100 · belly diameter−base diameter
2 ·belly height

.

Multiplying them with 100 is only for better reading. Together with
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Figure 3: Distance functions and their second derivatives of two cross sections

the relative heights of the belly and neck diameters these ratios al-
ready give a good impression of how the vessel’s body approxi-
mately looks like. Within a group of similar vessels their averages
(or better medians) might also represent a reasonable prototype.

2.3 Detecting Attachments

An at least equally important question is if there are handles and
other elements being attached to the body, because the existence of
such attachments has a strong implication on the vessel’s intended
purpose. Obviously, appendages violate the rotational symmetry
and the corresponding profiles differ significantly from those on
the rest of the body. This becomes even clearer if we consider the
distance functions of slices that intersect those appendages (fig. 3).
They contain one or more clearly observable peaks that superim-
pose the basic oscillation. Although in general these peaks are not
sinusoidal, we can also speak of them as oscillations, but with a
much higher frequency than the basic one. The problem of find-
ing attachments can thus be reduced to the detection of peaks that
cannot be explained by a low-swinging distance function. An at-
tachment is detected if the following three conditions hold.

Condition 1: Finding the parameters of the basic oscillation for
subsequent subtraction from the distance function is sometimes dif-
ficult, especially when attachment peaks coincide with its minimum
and/or maximum. In fact however we don’t even depend on these
parameters if we just analyze the occurence of the distance func-
tion’s inflection points. Every perfect oscillation has two of them
within one period with an offset of half the period. In case of our
basic oscillation this offset should roughly be 180 degrees. How-
ever, an oscillation of a much higher frequency causes the offset to
be clearly smaller, what is going to be our first condition for the
existence of an attachment.

Condition 2: Because the basic oscillation is not exactly sinusoidal
and besides that noise can bias the second derivative a lot, the ac-
tual number of inflection points can become rather high. There-
fore we make use of a second observation which basically says that
the distance function’s curvature is largest where unexpected peaks
start and end (fig. 3(c)). To be considered significant over noise
these maxima need to exceed the standard deviation of the second
derivative and they both need to be in direct neighbourhood of an
inflection point found by the first condition.

Condition 3: Once the potentially start and end angles ϕ1 and ϕ2
are found, it has to be checked if the corresponding peak in the
distance function is indeed significant. We therefore replace the
distance function between ϕ1 and ϕ2 with a function d̄(ϕ) (dotted

lines in fig. 3(a)). In general, a linear function should suffice, but
of course more sophisticated techniques such as Hermite or spline
interpolation serve even better. Finally, an attachment is detected if
the area A enclosed by the distance function and the interpolating
function exceeds a certain threshold which depends on the level of
detected noise.

A =

ϕ2∫
ϕ1

(d(ϕ)− d̄(ϕ)) dϕ (1)

In order to choose this threshold as low as possible we also make
use of the property that the starting and end angles ϕ1 and ϕ2 should
be coherent among adjacent slices. Hence, also the small hill in the
upper distance function of fig. 3(a) could have been detected.

Bails and Feet

In some periods bails and feet may have been mounted to the ves-
sel’s body. However, these as well as rim-standing handles cannot
be detected by the presented algorithm, because above and below
the body the distance function cannot be assumed to be constant.
Therefore, every segment that lies below the base plane or above
the orifice plane is treated as an attachment by default. The compu-
tation of these planes can easily be performed by means of the base
and orifice points described above.

Implementation Details

In the current implementation of the presented algorithm the dis-
tance function is preprocessed with a Laplacian filter for smoother
derivatives. The derivatives themselves are approximated discretely
by the difference quotient. Inflection points are found by the change
of signs.

After the attachments have been correctly detected, a mesh-grid-
association is simple. However, due to the cylindrical projection
body vertices that are projected into an attachment cell have to be
excluded. This could for example be done by adding a small thresh-
old to the interpolation function d̄(ϕ) and testing the vertices’ radii
against that function.

In case of plastic ornamentations or little bumps sometimes the
noise analysis fails and very small pseudo-attachments are com-
puted. To treat this, a minimum size for body extensions is de-
manded.

As the results in fig. 4 show, the algorithm is at the same time ro-
bust and precise. Since all computation is performed on a discrete
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Figure 4: Segmentation of vessels from different eras

Algorithm 1 Detecting attachments by means of edges within the
distance function

1: compute all profiles and distance functions by cylindrical pro-
jection

2: close holes in the distance function by linear interpolation
3: compute characteristic profile points
4: compute first and second derivatives of the distance function
5: for all slices in h do
6: for all profiles in ϕ do
7: if d′′(ϕ) = 0 and d′(ϕ) > 0 then // rising edge
8: find previous local maximum in d′′ at ϕ1
9: else if d′′(ϕ) = 0 and d′(ϕ) < 0 then // falling edge

10: find next local maximum in d′′ at ϕ2
11: end if
12: if ϕ2 −ϕ1 < π/2 and integral exceeds threshold then
13: attachment detected
14: end if
15: end for
16: end for
17: delete pseudo-attachments and exclude body-related vertices

grid whose resolution is usually much smaller than the point cloud
density the whole algorithm has a complexity of only O(n) with n
denoting the number of mesh vertices. Indeed, only the mesh-grid-
discretization step is predominant. Thus, even for large objects with
more than 1,000,000 vertices the computation time does not exceed
a few seconds.

2.4 The Optimal Profile

By the exclusion of attachments the estimation of an average profile
is much easier. At first, for each slice the median distance value is
computed. The set of all these median values is then called the
median profile. Note that this profile is only virtual! Due to the
averaging process on the median profile some meaningful details
such as corner points might be levelled out. Hence, we only regard
the profile that minimizes the pointwise Euclidean distance towards
the median profile as the representative one. This optimal profile
can serve for example for drawing documentation but also for an
easier extraction of the measures from section 2.2.

3 Similarity Estimation

After having extracted a set of features that gives a good abstract
representation of the vessel’s shape, some intuitive but also objec-
tive similarity measurement has to be found. This section deals

with metrics for different kinds of features and a reasonable way to
weight their importance.

3.1 Similarity of Single Values

Yet the comparison of two values of a single feature is not easy. The
metric to be chosen depends on the level of measurement (nominal,
ordinal, interval, ratio or count), the range of values and the mean-
ing that might be associated to certain intervals. Hence, for each
feature a different metric might be applied. We make four propos-
als.

sim(a,b) =

{
min

{
a
b , b

a

}
sgn(a) = sgn(b)

0 else
(2)

This relational approach is only suited for features that are at least
ratio-scaled, i.e. that have a non-arbitrary zero value. This applies
to all absolute measures but not necessarily for ratios. For them
in case of values of different sign a negative similarity would be
computed.

In contrast, the metric induced by

sim(a,b) = max
{

0,1− |a−b|
δ

}
(3)

is much less restrictive. Here the sign is irrelevant and the range
of tolerance can be controlled by the parameter δ . It can be cho-
sen from the total range of values down to zero where it converges
towards the Boolean approach (eqn. 5).

In the special case that intervals represent a certain nominal value
we can choose

sim(a,b) =

{
1 a ∈ I,b ∈ I
0 else

(4)

which however is the same as mapping all values onto a nominal
scale beforehand and using the following equation instead.

sim(a,b) =

{
1 a = b
0 a 6= b

(5)

The Boolean similarity metric is the strictest one of all. It should
only be used for nominal features whose extraction is very robust
and whose interpretation is out of question.



3.2 Importance of Features

No matter what features and metrics are chosen, for the total simi-
larity the single similarities should be summed up in a convex com-
bination.

SIM(A,B) = ∑
i

λi · sim(ai,bi) (∑
i

λi = 1,λi ≥ 0) (6)

The weights λi are though far from being obvious. Some features
may be more important than others. Normally, the archaeological
expert has a rough conception of how to choose them but they also
depend on the underlying material and the intended purpose. As
it has been shown in decision tree algorithms like ID3 and C4.5,
features can be ranked by importance with respect to a known set
of classes. This technique adapted from information theory should
be very briefly introduced here for nominal features. For numerical
features and further details cf. e.g. [Quinlan 1993].

Let X be a set of classes and E a set of entities each assigned to
either class x∈ X , then p(x) denotes the probability that some e∈ E
belongs to the class x which is the same as x’s relative frequency.
From that we can define

H(E) = − ∑
x∈X

p(x) · log2 p(x) (7)

as the entropy or the average self-information of a set of entities.
Assume now that we have a set of features F that describes each of
the entities. As shown by Quinlan [1993] one can define a unique
test on any feature f ∈ F so that E is split into n subsets Ei depend-
ing on the particular test. In case of nominal features this test is triv-
ially reduced to equality whereas on numerical features a threshold
is chosen and the outcome is twofold. In either case this yields the
a posteriori entropy

H f (E) =
n

∑
i=1

|Ei|
|E|

·H(Ei). (8)

The information gain of a test applied to f , i.e. the difference of
entropies before and after that test can thus easily be written as

IG( f ) = H(E)−H f (E). (9)

Simply, our most important feature is the one that maximizes that
difference. Unfortunately, the gain criterion favours tests with many
outcomes, for which a normalization has to be found. This can be
done by the so-called split information

SI( f ) = −
n

∑
i=1

|Ei|
|E|

· log2
|Ei|
|E|

(10)

and finally we have a normalized gain ratio by

GR( f ) =
IG( f )
SI( f )

. (11)

As it can be seen from table 1, both information gain and gain ra-
tio perform quite well, but the information gain underrates some
of the important structural features. The gain ratio criterion gener-
ally favours abstract features over indices and indices over absolute
measurements what corresponds even more to our expectations. It
is also notable that the overall shape feature directly induces the
primary type in more than 97% of all cases meaning that only very
few types are allowed to have a considerable variance of shape. All
absolute measures have a contribution being close to zero, what is
remarkable as well. Ironically they are usually the only ones that
are denoted in today’s archaeological documentation.

Information Gain
overall shape 1.796
rim index 1.250
h(main diameter) 1.117
main index 1.054
base index 0.861
# hold handles 0.697
shoulder index 0.605
# eyelet handles 0.494
total height 0.474
volume 0.326
main diameter 0.295
neck index 0.245
rim diameter 0.244
h(neck diameter) 0.235
neck diameter 0.215
base diameter 0.193
base bulge 0.175
neck height 0.069
# lugs 0
# tabs 0

Gain Ratio
overall shape 0.972
# hold handles 0.741
h(main diameter) 0.625
base index 0.595
rim index 0.584
main index 0.578
# eyelet handles 0.570
shoulder index 0.351
total height 0.310
rim diameter 0.288
base bulge 0.260
h(neck diameter) 0.260
volume 0.244
main diameter 0.214
base diameter 0.210
neck index 0.173
neck diameter 0.133
neck height 0.079
# lugs 0
# tabs 0

Table 1: Comparison of information gain and gain ratio values

Once having ranked the features their contribution to a user-defined
query can easily be computed. Be F again the set of features to
be considered, then the similarity between two vessels A and B is
finally

SIM(A,B) =
1

∑
f∈F

GR( f ) ∑
f∈F

GR( f ) · sim( fa, fb). (12)

Missing Values

Not every feature can be extracted on every type of vessel. For
example bowls don’t have a neck and therefore neither a neck di-
ameter, nor neck length, nor neck index. Furthermore, often some
vessel parts are missing. It is up to the user whether missing values
are ignored or if their contributional similarity is set to zero. For
the computation of the gain values missing values do not pose a
problem.

4 Results

We verified our method on about 300 complete or at least com-
pletely reconstructed vessels from the Bronze Age cemetery of
Kötitz (Eastern Saxony). Although this Lusatian culture material
has been well studied before (e.g. [Ender 2000; Puttkammer 2008]),
so far a consistent typology does not exist. In order to derive a
set of classes that is almost free from individual interpretation, we
employed decision tree learners and neural networks [Hörr et al.
2008b]. After several steps of iterative refinement we could dif-
ferentiate 20 primary types, eight of them special forms with very
few members and about 35 secondary types. 20 features have been
taken of which six have been nominal, seven absolute measures and
seven ratios (table 1).

Some results of queries to our database are shown in table 2. Al-
though all vessels have been crafted without a potter’s wheel the
ranking is intuitive and comprehensible for the very most types.
Furthermore, the fact that the vast majority of the most similar ves-
sels belongs to the same class as the queried one indicates that the
underlying typology is very sophisticated yet. We assume that the



results improve even further on industrially manufactured ceramics
such as Greek and Roman ware.

Independently, for the daily archaeological work many benefits
arise:

• Classification schemes can be refined by supervised machine
learning techniques,

• classification can even be performed without the existence of
a classifier but only by the similarity values and class labels
of the most similar vessels,

• attempts for a chronological morphology of types (type genet-
ics) can be made,

• material from different groups and cultures can be compared
more objectively, leading to more precise definitions and
maybe revealing new relations between them,

• and finally moving of peoples and trading of goods can be
retraced and verified with current knowledge.

5 Conclusion and Outlook

From the presented work it turns out that it is possible to find similar
vessels very precisely only by means of their shape features. This
new tool for quantifying similarity objectively will enable archae-
ologists to come much faster to reliable scientific conclusions, to
improve existing typologies, and also to discover supra-regional co-
herencies by overcoming international language barriers and miss-
ing standards. Instead of matching entities only on the basis of their
overall geometry, they are described and compared in terms of their
features. There is no evidence that this approach may not work in
other domains too, e.g. weapons, tools or trinkets.

In the future we plan to set up a distributed retrieval system for
pottery that also considers non-morphological features such as ma-
terial, colour and burning [Wagner et al. 2008]. This system shall
be based on specific ontologies and shall also allow tagging and
textual description of objects. An interesting question to answer
would be how accurate and reliable it is possible to date and clas-
sify an unknown vessel if the database contains material from many
different eras.
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HÖRR, C., LINDINGER, E., AND BRUNNETT, G. 2008. New
paradigms for automated classification of pottery. In Proc. 36th
Conference on Computer Applications and Quantitative Meth-
ods in Archaeology, in press.

KAMPEL, M., AND SABLATNIG, R. 2007. Rule based system for
archaeological pottery classification. Pattern Recognition Letters
28, 740–747.

MARA, H., SABLATNIG, R., KARASIK, A., AND SMILANSKY, U.
2004. The uniformity of wheel produced pottery deduced from
3d-image processing and scanning. In Digital Imaging in Media
and Education, Proc. 28th Workshop of the Austrian Association
for Pattern Recognition (ÖAGM), 197–204.
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