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Abstract 
Image restoration is one of classical inverse problems in image 
processing and computer vision, which consists of the recovering 
information about the original image from incomplete or degraded 
data. In this paper, we consider the problem of reduction of ring-
ing that appears after image resampling. We introduce a novel 
method for image restoration, based on a quasi-solution method 
for a compact set of functions with bounded total variation. It is 
an alternative approach to using a total variation functional as a 
stabilizer in Tikhonov regularization, and it does not oversmooth 
or displace edges. 
Keywords: total variation, image interpolation, deringing. 

1. INTRODUCTION 

Many problems of image restoration can be posed as problems of 
solution of a linear equation 

UuZ,zu,=Az ∈∈ , (1) 

where Z and U are Hilbert spaces, A is a linear continuous opera-
tor from Z to U, so the inverse operator 1−A exists but is un-
bounded. Thus, the problem (1) is ill-posed [1, 2] and the corre-
sponding matrix for operator А is ill-conditioned. 
One of the ways to make the problem (1) well-conditioned is 
using Tikhonov regularization method [1, 2]. It makes this prob-
lem well-posed and prevents noise amplification during restora-
tion. This method constructs the approximation z~  of the un-
known source function z  from the observed degraded (noisy) 
function δδδ ≤−uzAu : . 

dxzuAzz
Zz

)]()[(minarg~ 22 ∇Ψ+−= ∫
Ω

∈
αδ , (2) 

where the regularization parameter )(δαα =  is chosen in accor-
dance with the noise level. In image processing, following classes 
of functions Ψ are typically used: (a) Tikhonov functional 

, (b) total variation tt =Ψ )( tt =Ψ )( . The utilization of Tik-
honov functional leads to a quadratic problem, but strongly 
smoothes sharp edges. Total variation method allows finding 
discontinuous solutions, so it preserves edges during restoration. 
We have discussed this method for image interpolation in our 
previous paper “Image Interpolation by Super-Resolution” [3] and 
formulated it in discrete form as a problem of minimization of (2) 
with a more complicated stabilizer: 
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where  and  are shift operators along x and y axes by s and t 

pixels respectively, 

s
xS t

yS

8.0=γ  and A is a downsampling operator. 
We approximated the solution of (3) by iterative steepest descent 
method 
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More details about it can be obtained in [3]. 
Despite of good results, Tikhonov regularization method has one 
disadvantage: it is needed to specify the regularization parameter 
α , but we cannot define an accurate rule for its selection. The 
alternative approach to (2) is the minimization problem 

∫
Ω

∈
−= dxuAzz

Mz

2minarg~
δ , where 

})(|{ 2∫
Ω

≤∇Ψ∈= CdxzZzM  
(5) 

In our work, we are using tt =Ψ )( , so M is a set of functions 
with limited total variation. The problem (5) can’t be used di-
rectly in image resampling due to several limitations on operator 
A, but may be very useful for post-processing because parameter 
C can be reasonably specified. 
The rest of the paper is organized as follows. In section 2, we 
introduce a quasi-solution method for bounded total variation 
functions for solving problem (1), which does not need to specify 
noise level or regularization amount. In section 3, we show sev-
eral applications of this method. Some improvements of this 
method are described in section 4. Section 5 concludes the paper 
by summarizing applications of this method in image processing. 

2. QUASI-SOLUTION METHOD 

Definition. Point MzK ∈  for which uAz −  reaches a mini-
mum on a given compact set M of the space Z is called quasi-
solution [4,5] on M for a given u  

uAzz
MzK −=

∈
infarg  (6) 

If we assume that operator А is continuous, the discrepancy 
uAz −  will be continuous functional, which reaches its in-

fimum on a compact set M. Thus, a quasi-solution exists for every 
Uu∈ . The problem of finding quasi-solutions is well-posed [2]. 

2.1 Quasi-solution method for bounded total 
variation functions (TVQ) 
We applied quasi-solution method (6) for solving problem (1) in 
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one-dimensional case ( [ ]baLZ ,2= , [ ]dcLU ,2= ). The set
constrained functions with variatio

 M of 
n less than constant  is a 0≥C

compact set in [ ]baL ,2  space, and operator A is linear, bijective 
and precisely defined. ing total varia-
tion quasi-solution method (TVQ) to solve problem ( one-
dimensional case: we construct a sequence that minimizes the 

discrepancy functional 

So we consider the follow
1) in 

( ) 2uAz=zF −  on the set of bounded 
functions with total variation less than given value С. 
It is necessary to underline that TVQ method does not need in-
formation on the noise level δ  in contr

we use the 

 

ast to Tikhonov regulari-
zation method. Instead of regularization parameter 
value of signal total variation as the stabilizing parameter. 

2.2 Numerical scheme
For the first time a numerical method for solving TVQ problem 
has been considered in the book [6]. 

The discrepancy functional ( ) 2

rechet derivative is equal to 

uAz= −  is a quadratic func-
tion that is defined for every z on compact set M. This functional 
is convex and differentiable, and its F

zF

( )=zF' , 

here

( )u*AAz*A −2

ZU:A* → is the adjont operator.  

So for approximate solving of the equation (1), we need to con-
struct a minimizing sequence for the convex and differentiable 

ert space. functional on a closed limited set in Hilb
After discretization, we obtain the following problem: to construct 
a sequence of vectors n

l Rz ∈ that minimizes quadratic function 

( )zφ  on a convex set CV , where CV  is a set of vectors nRz∈ , 
which components satisfy conditions: 

| | | | | Czz+z+zz n ≤−−− −12312  |+z n…

0=zn . 
) (7

As ( ) ( )czVzV b
a

b
a += , 

on a boundary of segm
it is natural to fix the value of function z 

ent e that we kn

one of the boundary values 

] . Thus we assum,[ ba ow 

( )az  or ( )bz   (hereinafter we assume 
that ( ) 0=bz , 0=zn . 

Since considered functional has rechet derivative satisfying 

Lipschitz condition with a constant 

)

a F
2 , the conditional 2 A=L

gradient method can be used to solve this problem. It is described 
in detail in [6]. We have also analyzed an algorithm which 
doesn’t need to fix 0=zn . 

3. APPLICATIO

thod is applicable for a wide 

n. 

ethod to the prob-
 of deringing after interpolation. Therefore, we assume in (6) 

NS 

The proposed TVQ regularization me
range of signal processing problems: 
1. Image restoration. 
2. Gibbs phenomenon reduction (deringing). 
3. Noise reduction (denoising). 
4. Super-resolution and interpolatio

Below we will consider application of TVQ m
lem

IA =  (unit operator). 

3.1 Gibbs effect reduction (deringing) 
G  phenomenon (ringing effect) is caused by quantization or ibbs

ation 
age of coeffi-

truncation of high frequency information by approxim
method. For example, it can be seen after shrink
cients of Fourier or wavelet transform. In spatial domain, this 
effect produces spurious oscillations near sharp edges. 
TVQ method eliminates ringing effects and practically does not 
blur edges. For image processing (see a result in figure 1) we are 
using the algorithm introduced in the previous section 

  
a) Detail of a source image b) Detail of a smoothed image 

(decimation coefficient is equal 
to 0.75) 

hen

3.2 Interpolation 
Many resam cts, so it’s 

ages. 
fine regularization parameter 

Figure 1: Gibbs p omenon reduction. 

pling algorithms introduce ringing artifa
ethod to process interpolated imreasonable to apply our m

Some methods need to de α , but do 
not provide a way to find its optimal value. Smaller values pro-
duce ringing artifacts, higher — smooth image too much. So, we 
choose small regularization and then use TVQ method to remove 
ringing artifacts. The key assumption is that the total variation of 
interpolated image should be the same as for the source image, so 
we can reasonably define a constant C in (5). In one-dimensional 
case, the task is formulated in the following way: 

1. Source discrete image x  with total variation )(xVC =  
and an interpolated image y  are given. For example, 
image z~  may be obtained using method (3). 

We need to construct an image *2. z  such that: 
zzz

z CV
~min* −=

′∈
, where ( )[ ]CzV:z=VС ′≤′ , kCC =′ , 

where k is a coefficient close to 1. 

e may d f 
n  separately and then 

ertical a d horizontal processing. T

In two-dimensional case, w ivide the image into a set o
rows and colum s, process them average re-
sults of v n he example result is 
shown in figure 2. The initial interpolated image was obtained by 
superresolution method based on a regularization formula (3).  
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a) Source image fragment b) Interpolated fragment (x2) 

  
c) Postprocessed (k=1.5) d) Postprocessed (k=1.2) 

Figure 2: Image resampling. 
One of drawbacks is the fact that this method operates with entire 
rows and columns, but Gibbs phenomenon appears only near 
edges, so we can lose details outside edges. So, we have proposed 
an adaptive algorithm to avoid this problem: for every pixel in 
interpolated image we take a small fixed-size square fragment 
with a center at this pixel and a corresponding fragment on a 
source image, consider these fragments as new source and inter-
polated images, and then we process this pair by the algorithm 
described above. Pixel values of resulting image are constructed 
from central pixel values of postprocessed fragments. 

  
a) Interpolated fragment b) Postprocessed by local 

method (k=1.0) 
Figure 3: Image resampling. 

Ringing effect was not fully removed because it was present in 
the source image but this method has removed the effect added by 
the resampling algorithm. In comparison with the general method, 
this method works faster because the iteration process converges 
much faster when operates with the reduced set of points. 

4. METHOD IMPROVEMENTS 

This method very effectively suppresses ringing artifacts, but it 
also corrupts high-detailed fragments of an image, for example, 
grass texture. So, it’ll natural to process only areas with percepti-
ble ringing effect near strong edges and skip areas, where no ring-
ing effect or small details are present. 

  
Figure 4: Example of degradation of fine-detailed area before and 

after processing by TVQ method. 
4.1 Weight map 
We’ll use a weight map to define areas, where ringing effect 
should be suppressed. The resulting image is constructed as a 
weighted sum between interpolated image z~  and interpolated 
image, postprocessed by TVQ *z . 

)1(~
,,,

*
,, jijijijiji wzwzz −+= ,  10 , ≤≤ jiw , (10) 

The key principle of constructing the weight map is that the 
weight value is high only near sharp isolated edges. 
The weight map is constructed by using the following algorithm: 

1. In every point, calculate a norm of gradient which pro-
duces edge power map . Low values belong to 
smooth areas, and high values belong to edges. Higher 
values result in sharper edges. 

jie ,

2. In every point, calculate the edge score. 

∑
≤−+−=

−−=

Rjjiir

jijiji eperfs
22 )'()'(

',',, ))((σ , 

where  
⎩
⎨
⎧

>
≤

=
0,1
0,0

)(
x
x

xσ

(11) 

In other words,  is a number of pixels in a window 
satisfying a set of conditions 

jis ,

'',,)( jiji eperf >−  for each 

Rjjiirji ≤−+−= 22 )'()'(:','  
(12) 

p is a noise level (the minimum value of edge power to 
classify a point as a part of an edge), R is a maximum 
distance between edges with similar power to classify 
an area as fine-detailed and  is a weight function. 
We are using the following function 

)(rf

2

2

2
2
1)( ρ

r

erf
−

= , where R
3
2

=ρ  (13) 

A one-dimensional example is shown on a figure 5. 

GraphiCon'2007 Russia, Moscow, June 23-27, 2007



-6 -4 -2 0 2 4 6

 

 Edge power
 Conditional function (4)

 
Figure 5: An illustration of the algorithm for R=6. Points, where 

the condition (12) is true, are solid black. The score is 9. 
3. Apply the threshold 
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S is a minimum number of compliances to classify a 
point as a part of sharp isolated edge. Sometimes it may 
be represented as , where T is total number of 
pixels in a window and is the percent of edge pixels 
below the threshold. We assume . 

qTS =
q

3.0=q

4. Filter, dilate and smooth the weight map. Filtering re-
moves isolated single points from the weight map, 
which usually belong to noise. Dilation is needed to ex-
tend areas near edges, because the 3-rd step of this algo-
rithm marks only edges. 

4.2 Applications 
The use of weight map for image-adaptive filtering is shown in 
figure 6. 

    

    
Figure 6: Fragments of source image, processed image, corre-

sponding weight map (inverted) and final image. 
We have compared postprocessed interpolated low-resolution 
images with high-resolution images by PSNR metric and come to 
a conclusion that use of the weight map increases the PSNR 
value. 

5. CONCLUSION 

In this paper, we have suggested a novel image restoration algo-
rithm based on a quasi-solution method for a compact set of func-
tions with bounded total variation. It is an alternative to total 
variation functional used as the stabilizer in Tikhonov regulariza-
tion and it also does not oversmooth or displace edges. At the 
same time, the application of this method does not need estimates 
of the noise level, which are necessary to choose regularization 

parameter in the Tikhonov functional. This information on the 
level of noise is usually unavailable and the selected regulariza-
tion parameter does not have a reasonable explanation. In our 
case, we use the information on image total variation value. The 
approbation of this method with test images shows effectiveness 
of this method for image deringing and resampling. This quasi-
solution method also looks promising for other areas of image 
processing that traditionally use a total variation approach. 
This research was partially supported by RFBR grant 06-01-
00789. 
A program with implemented TVQ method with weight map may 
be downloaded from the site 
http://audio.rightmark.org/lukin/graphics/tvq.htm
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