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Abstract 
Digital image matting is a process of extracting a foreground 
object from an arbitrary natural image. Unlike the image 
segmentation task it is required to process fuzzy objects (like hair, 
feathers, etc.) and produce correct opacity channel for them. The 
result can then be composited onto a new background or edited 
by processing foreground and background layers separately.  
Digital image matting has become a compulsory step in many 
photo-editing and video-compositing tasks. Currently professional 
digital artists have to accurately trace objects contours and paint 
the details to achieve maximum quality. Our aim is to create a 
convenient workflow for automating this process and make it 
possible to effectively handle high-resolution images. 
In this paper we show how a smoothness constraint can be 
incorporated into Bayesian matting algorithm framework as 
additional regularization to improve the result quality without 
affecting the computation speed. We also demonstrate the 
hierarchical approach that significantly increases processing 
speed without noticeable loss of quality. This allows us to create 
convenient digital image matting system. 
Keywords: Bayesian matting, image editing, digital compositing, 
foreground extraction, alpha estimation. 

1. INTRODUCTION 

In the matting problem it is assumed that the source image C is a 
composite of two images F and B (foreground and background) 
with opacity channel α. These values should satisfy the RGB-
space compositing equation in each pixel: 

)B(1FC αα −+= , (1) 

where C, F and B are 3D vectors of RGB values, 0 ≤ α ≤ 1. The 
task is to reconstruct the α, F and sometimes B images from the 
source image C using some additional user input. 
Typically matting algorithms takes a source image and a 
trimap image as input. Trimap image is a user-specified 
segmentation of the image into three regions: foreground, 
background and unknown. While the former two provide the 
knowledge about the object to be extracted, the latter denotes the 
area to which the algorithm should be applied. The result of the 
algorithm is a foreground image layer with color and opacity 
information available for each pixel, and a background layer. 
When composited together, these two layers should produce 
exactly the source image. 

The problem is to reconstruct F, B and α values at each pixel 
from single observation C from a limited user input. The trimap 
specifies the areas with α = 0 (B = C), α = 1 (F = C) and 
unknown F, B, α. Note that if two of these three values are 
known, the fourth one can be easily calculated. The problem is 

heavily under-constrained, since for each color C there is an 
infinite number of combinations of foreground and background 
colors. In order to constrain the problem and make it formally 
solvable some regularization is required. 
In the next section we make an overview of most notable 
algorithms, that propose different regularizations of the problem. 
In the third section we describe Bayesian matting algorithm in 
more details and propose our improvements. We show how a 
smoothness constraint can be incorporated into Bayesian matting 
algorithm. We also demonstrate the hierarchical approach and 
discuss its possible integration with smoothness constraint. After 
it we show the results and comparisons with other algorithms and 
outline the future work. 

2. PREVIOUS WORK 

In this section we briefly overview several state-of-the-art matting 
algorithms and outline their main ideas. 
Knockout algorithm requires a precise trimap, ideally with 
unknown region containing only pixels with 0 < α < 1. When 
processing an unknown region pixel, F and B values are estimated 
by averaging color along the foreground/background region 
border in the neighborhood of the pixel being processed. α value 
is then calculated for each color component independently and  
weighted average is used as final α value. While being very fast, 
this algorithm produces poor results when F and/or B values in 
the pixel are inconsistent with the color along the corresponding 
region boundary. This happens in many images and the algorithm 
produces incorrect and noisy results. 
Ruzon-Tomasi method [6] is a color statistics based algorithm. 
The distributions for foreground and background colors are 
modeled as the mixtures of unoriented Gaussians. Color statistics 
is calculated for rather big image fragments. Then α value is 
calculated under assumption that color C comes from in-between 
distribution which is an interpolation of foreground and 
background distributions. This algorithm maximizes probability 
density of this distribution in point C. The disadvantage of the 
algorithm is its relying on the color statistics over large image 
sub-regions which usually contains many overlaps and cannot be 
handled correctly. 
Bayesian matting [2] also uses color statistics, but performs per-
pixel color distribution estimation. Pixels are processed starting 
from foreground and background region borders contracting 
unknown region step by step. Pixels processed on earlier steps 
provide new foreground and background samples in addition to 
pixels from known regions. Used color model is a set of oriented 
Gaussians. Algorithm involves Bayesian framework to maximize 
the likelihood of F, B and α values. Conditional probability for F, 
B and α given observed color C can be written using Bayes’s rule 
as: 
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P(C)
)()P(F)P(B)PB,F,|P(CC)|B,P(F, ααα = , (2) 

where P(C|F,B,α) is estimated using the distance between C and 
the mix of F and B (i.e. by the norm of the difference of the left 
hand side and right hand side of equation (1)), 
P(F) and P(B) are estimated via probability density of foreground 
and background Gaussians, 

P(α) is ignored (assuming all α values to be equiprobable), 
P(C) is constant relatively to maximization parameters. 
There is an extension of Bayesian matting algorithm proposed in 
[1]. It introduces P(α) term (which is ignored in the original 
algorithm) based on learnt priors (joint distribution of image and 
α gradients) and some additional priors, e.g. image edge 
magnitude. However, it uses global non-linear minimization of 
the energy function which is probably very slow (there is no time 
comparison in [1]). Their edge prior is more suitable for matting 
hard edges and probably oversharpens smooth objects, e.g. hair. 
Poisson matting algorithm [7] assumes that F and B images are 
smooth in the unknown region. F and B values are estimated at 
each pixel by propagating color values from boundary and 
blurring the result. Poisson’s partial differential equation 
constructed by taking the gradient of equation (1) is used for 
finding α image. Then the unknown region is reduced by fixing 
pixels that are close to being pure foreground or pure background, 
and the procedure is iteratively repeated until convergence. 
Poisson matting produces poor results when 
foreground/background image is not smooth (i.e. contains edges) 
or contains colors that are much different from those on the 
unknown region border.  
Belief propagation algorithm [9] produces good result with very 
sparse trimaps i.e. containing small foreground and background 
regions represented with a few strokes with the rest of the image 
being the unknown region. Discrete set of alpha values is used. 
The problem is formulated as energy minimization with the 
expression for energy consisting of data term, which forces F and 
B values to conform to the local statistics, and smoothness term. 
Markov Random Field (MRF) is constructed for the image pixels 
and discrete α values and solved using Belief Propagation 
method. Then the color statistics is refined and the algorithm is 
applied iteratively until convergence. However, this process is 
rather slow even for a single iteration and takes a while to 
converge. 
Closed Form Solution to image matting algorithm [4] deals with 
a quadratic cost function. The main assumption is that colors in F 
and B images are locally linear i.e. for each of those images they 
are approximately linear combinations of two colors. In this case 
α is linearly dependent on color C in small image windows: 

,baC pp +≈α  

where p is a pixel in a small image window (e.g. 3x3), a and b are 
coefficients fixed inside this window. 
For grayscale images a and b are related with F and B by the 
following equations: 

a = 1 / (F – B), 

b = –B / (F – B). 

For color images they can also be expressed in terms of F and B 
(with a being a 3D vector): 

,bCa k
p

k

k
p +≈∑α  

(3) 

where k is a color component index. 
The cost function is constructed which penalizes the difference 
between the pixel α value and the one computed using (3). a and 
b coefficients are eliminated by expressing them in terms of 
known C and to-be-found α values. Least squares method is used 
to express a and b in  (3) using α values over the neighborhoods 
of nearby pixels. It is shown in [4] that this cost function is 
quadratic with respect to α. 
The cost function is then minimized by solving a sparse system of 
linear equations with matrix of size N by N where N is number of 
pixels in unknown region. This gives the α image directly from 
the source image. F and B are calculated later using another 
quadratic cost function. 
Disadvantages of this algorithm include low computation speed 
and the lack of color statistics. The latter does not affect many 
images but usually produces “glows” in alpha channel in small 
holes and thin grooves (because large number of nearby opaque 
pixels impedes the propagation of background color information). 
Also the assumption of local foreground/background color 
linearity may not hold for noisy images. 

3. OUR IMPROVEMENTS OF BAYESIAN MATTING 

We have chosen Bayesian Matting algorithm [2] because at the 
moment it is the best color statistics based non-iterative algorithm 
and demonstrates optimal speed/quality balance. It doesn’t rely on 
any strong assumptions about alpha and color channels like 
Poisson matting does. It works with complex distribution of 
foreground/background colors and its processing time is linear of 
number of pixels. Usage of statistics-based algorithm allows us to 
perform recalculation of the result in a small region without need 
to recalculate the whole image.  
In the next several paragraphs we are going to describe Bayesian 
matting algorithm in more detail to form the base for our 
improvements. 
Taking a logarithm of (2) and omitting terms not affecting the 
parameters to be calculated, we get 

L(B)L(F))B,F,|L(CC)|B,L(F, ++= αα , (4) 

where L(⋅) = log P(⋅). 
The authors of [2] use the following estimations of L(C|F,B,α), 
L(F), L(B): 

2
C

2
/B)1(FC)B,F,|L(C σααα −−−−=  

(with user-specified Cσ ), 

2 / )FF()FF(L(F) 1
F

T −Σ−−= − , 

where F  and FΣ  are mean and covariance matrix of foreground 
Gaussian, 
L(B) – similarly to L(F). 
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The authors of Bayesian Matting left deriving P(α) from ground-
truth alpha mattes for future work, but as far as we know did not 
publish any papers or results on this. 
If there are several pairs of foreground/background clusters, 
optimal F, B and α are calculated for each pair, then the pair with 
the greatest likelihood value C)|B,L(F, α  is selected. 

In order to maximize the non-quadratic function (4) the authors 
use an iterative procedure by alternately assuming α and F, B to 
be constant, what gives them two quadratic sub-problems. They 
use the mean α value over the neighborhood of the pixel being 
processed as the initial guess. 

For constant α the following 6x6 system of linear equations for F 
and B is derived: 
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(5) 

For constant F and B the solution for α is simply the projection of 
C onto line segment FB: 

2
)()(

BF
BFBC

−

−⋅−
=α  

(6) 

 

Calculation of F, B and α by alternating formulas (5) and (6) is 
repeated until convergence. 

3.1 Smoothness constraint 
Bayesian matting is sensitive to overlapping of foreground and 
background Gaussians. In the original algorithm such makes α 
estimation unstable and usually produces impulse noise in 
generated opacity channel. Simple blur and median filters can 
improve alpha channel quality, but small details in the matte can 
be lost. Instead, we propose to add smoothness term into the 
Bayesian framework to regularize the estimation process in such 
cases. We model smoothness as 1D Gaussian with mean value α0 
being the average among already processed pixels, i.e. the same 
value that is used as initial guess for α when solving the system 
(5). Our smoothness term is introduced into (2) as P(α). 

We use the following term for L(α): 
22

0 /)L( ασααα −−=  

Thus we are maximizing the following log-likelihood: 

)L(L(B)L(F))B,F,|L(CC)|B,L(F, ααα +++= , (7) 

Forcing partial derivative of (7) with respect to α to equal zero 
gives us the following solution for α: 

222

22
0

//1
/)()(/

C

C

BF
BFBC
σσ

σσα
α

α

α

−+

−⋅−+
=  

(8) 

Formula (8) replaces formula (6) in the optimization procedure. 

We can define ασ  in several ways. First, we can use fixed user-
adjustable value. Second, we can base it on the distance between 
foreground and background Gaussian to prevent oversmoothing 

while keeping regions of high uncertainty (caused by overlapping 
of these Gaussians) consistent with nearby pixels: 

)),(),((0 BPFPdist⋅+= λσσ αα  

where 0
ασ  and λ  are user-specified values (in our experiments 

we set )1.00 == λσα   and ),( ⋅⋅dist  is the distance metrics 
between two distributions (we use the distance between Gaussians 
centers). 
Third, we can use two-pass Bayesian matting using likelihood 
values calculated on the first pass for estimating ασ  on the 
second pass (it is similar to uncertainty map used in [9]). 
To make smoothing less uniform and force it to conform to the 
color changes, we use weighted average for α0 in pixel q: 

p
p

p w
W ∑ ⋅= αα 1

0
 

where the sum is taken over the already processed (or known) 
pixels in the neighborhood of pixel q with the following weight 
(W is a sum of all weights wp for the pixel q): 
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(we have empirically chosen value of 0.2 for wσ ). This α0 value 

is also used as initial guess for α in fixed-alpha equation (5). 
Similar weighted-averaging method is used in many 
segmentation-related publications. 
The usage of smoothness term practically does not affect 
computation time. The example results are shown in figures 1, 2 
and 3. Computation times are compared in section 4. 

3.2 Hierarchical approach 
Another improvement is the hierarchical Bayesian matting. It 
aims to reduce processing time without losing the matte quality. A 
straightforward way to do this is to process small-scale image 
first, then revert to the source size and perform Bayesian matting 
again with much smaller sampling radius. But there is a more 
effective way to do this: by applying Closed Form Solution [4] 
hierarchical approach to Bayesian matting result we calculate a 
and b coefficient images using equation (3) from smaller image 
and use them to upsample α image back to original size. This 
allows us to completely eliminate second pass of Bayesian 
algorithm since we usually get accurate alpha channel. To restore 
F and B channels we can also assume that their RGB channels are 
linear combinations of channels of C (though we can also perform 
second pass of Bayesian matting for constant α). 
We generate a smaller image using bilinear downsampling. The 
trimap is downscaled using the resampling filter that marks the 
pixel of smaller image as foreground/background only if all 
corresponding pixels of the source trimap are 
foreground/background, otherwise it is marked as unknown. 
Bayesian matting parameters such as sigma value used for spatial 
weight of the sample are also downscaled. Bayesian matting is 
performed on a smaller image/trimap pair and produces α, F and 
B images. These images are required to be upsampled back to the 
original size. We apply the following procedure to α image and 
each channel of F and B images (but we will refer to the channel 
being processed as α): 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 1 Example of Bayesian matting with smoothness term. (a) Chipmunk image from Berkeley data set [5]. (b) Our trimap. (c) Alpha 
obtained by standard Bayesian matting (our implementation). (d) Alpha obtained by Closed Form Solution [4]. (e) Alpha obtained by 
Bayesian matting with our smoothness term. (f) Composite on a constant-color background using the result of (e). 
 

  
(a) (b) 

  
(c) (d) 

Figure 2 Example of Bayesian matting with smoothness term. (a) Image from [2] website. (b) Trimap from [9]. (c) Composite obtained by 
standard Bayesian matting. Artifacts and problem areas denoted by red arrows. (d) Composite obtained by our improved Bayesian matting 
algorithm.
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1. Calculate a and b coefficients at each pixel of the 
downscaled image that give the least squares 
approximation over a 3x3 window as in equation (3). 

2. Resize the coefficient images using bilinear upsampling 
filter. 

3. Produce upscaled α image (of original size) by applying 
equation (3) to the source image C using a and b 
coefficients from upscaled coefficient images obtained 
on step 2. 

Apparently we can use scale factors which may be non-power-of-
two and even non-integer (however, the upsampling procedure 
optimized for power-of-two factors works a little faster). We use 
3x3 windows around the pixel. 
It can be noticed that applying equation (3) to a downscaled 
image blurs the alpha channel. To prevent this on step 1 we 
constrain alpha value at the pixel being processed (i.e. at the 
central pixel of 3x3 window) to equal the right-hand side of (3) 
exactly. 
Using Bayesian matting with smoothing on a downsampled image 
instead of Closed Form Solution, as in [4], increases total speed of 
the algorithm, and gives better results on some images, like in 
Figure 1. 

Performing Bayesian matting on the image of smaller size gives 
us a non-linear speed up. For reasonable downscale factors (≤4) 
the matte quality does not decrease in any noticeable way. 

4. RESULTS AND COMPARISONS 

Here we provide some results obtained with our improved 
algorithm compared to the original algorithm (our own 
implementation is used) both in quality and processing time. We 
also compare the result to Closed Form Solution matting 
algorithm [4] using the MATLAB code provided by the authors. 
Unfortunately, we could not do time comparisons in this case 
because the MATLAB code is very slow. 
In Figure 1 we show how the introduced smoothness constraint 
helps to matte a rather complicated image with many color 
similarities between foreground and background. Processing time 
for both standard and smoothing Bayesian algorithms is 0.8 
seconds on AMD Sempron 3100+ (1800 MHz) processor (image 
size is 299x219 pixels). Note that in case when foreground and 
background color statistics are hardly distinguishable, object 
boundary is attracted to the center line of the unknown region (a 
set of pixels that are equidistant from the foreground and 
background regions in L1-distance). This happens when 
maximization of L(F)+L(B)+L(C) terms fails to achieve high 
likelihood value and the smoothness term L(α) overpowers the

 

  
(a) (b) 

  
(c) (d) 

Figure 3 Example of Bayesian matting with smoothness term. (a) Image from Berkeley data set [5]. (b) Our trimap. (c) Composite 
obtained by standard Bayesian matting (with several close-ups). (d) Composite obtained by our improved Bayesian matting algorithm 
(with several close-ups). 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 4 Example of hierarchical Bayesian matting. (a) An image from [3] (also used in [7]). (b) Corresponding trimap. (c), (d) Alpha and 
foreground images obtained by standard Bayesian matting. (e) The result of (c), (d) composited onto constant-color background. (f), (g) 
Alpha and foreground images obtained by hierarchical Bayesian matting with downscale factor of 8. (h) The result of (f), (g) composited 
onto a constant-color background. (i) A composite of (f) using the foreground obtained by simple bilinear upscaling. Shown to emphasize 
the sharpness of details reconstructed in (h). 
 
other terms. This usually gives a good spatial-based rather than 
color-statistics based guess of object contour. However, many 
small details, absent in the unknown region shape but found using 
color statistics, are reconstructed. 
In Figure 2 we show how smoothness term improves foreground 
color and small hair details. In this image small inaccuracies in 
the estimated alpha matte lead to incorrect estimation of 
foreground color. Smoothness term improves alpha matte 
insignificantly but this is enough to get good color estimation. 
Areas of similar foreground and background colors (especially on 
the lower left of the image) are also improved. 
The same can be seen in Figure 3. Small black spots and small 
holes along the edge are effectively handled by our algorithm. 
The result image can be used for creating a composite without the 
need for manual clean-up. 

In Figure 4 we demonstrate our hierarchical approach. 
Downscaling factor of 8 was used. Standard Bayesian algorithm 
took 5.2 seconds to compute on the processor mentioned above 
(image size is 640x480). The hierarchical approach reduced this 
time to 0.16 seconds while preserving the quality of the result. In 
Figure 4 (h) we show a composite obtained using the alpha matte 
from Figure 4 (e) with bilinearly upscaled foreground. Hair 
details, though preserved in alpha matte, become blurred with 
loose foreground color image. This demonstrates the importance 
of applying the upsampling algorithm to F and B images. We can 
also approximately compare the processing time with that of 
Poisson matting [7] assuming that their and our implementation of 
standard Bayesian matting runs the same time. This gives us a 
rough estimate of 0.23 seconds processing time for Poisson 
matting on our processor. 
Table 1 shows the time comparison between the standard and the 
hierarchical Bayesian Matting algorithms on several images: 
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woman image from Figure 4, car, flower and lighthouse images 
from Figure 5. For each image we chose maximal downscaling 
factor which produced insignificant deviation of the result from 
the standard Bayesian Matting result.  

5. FUTURE WORK 

5.1 Selecting optimal parameters for smoothness 
constraint 
One of the natural improvements is selecting optimal expression 
for ασ used in (8) to produce the best results. In addition, we can 
evaluate several workflows involving smoothness and hierarchical 
passes to find the best speed/quality compromise. 
 

Image Resolution TS (sec) D TH (sec) 

Woman 
image 640x480 5.2 8 0.16 

Car image 723x489 3.8 4 0.19 

Flower 
image 600x450 3.9 2 0.43 

Lighthouse 
image  320x480 5.3 2 0.46 

Table 1. Processing time comparison of the standard and 
hierarchical Bayesian matting algorithms. TS – time for the 
standard algorithm, D – downscaling factor, TH – time for the 
hierarchical algorithm.  
 
We also consider adding other user-controlled parameters besides 
trimap which could improve the result. For example, we can add 
smoothness brush which would allow the user to roughly specify 
areas where ασ should be increased. We also want to make 
recalculation of the result as quick as possible (based on previous 
refinement step result) to save the user from waiting full image 
processing time after adding only several strokes to the trimap. 

5.2 Trimap generation from user strokes 
Algorithms producing good results from rough strokes could be 
more preferable than those which require precise trimap, if they 
were fast. At the moment there are no algorithms that can quickly 
perform full processing from several user strokes. So the 
following approach can be a good compromise: using a fast 
algorithm to produce more-or-less precise trimap from several 
user strokes can precede full processing algorithm. We consider 
using GrowCut algorithm [8] for this step. The produced trimap 
can also be made user-editable. 

5.3 Video 
One of the challenging fields of matting algorithms application is 
video compositing. In spite of recent achievements in natural 
image matting, video/film-editing studios continue to use chroma-
keying and rotoscoping for foreground object extraction from 
video sequence. 
Used chroma-keying algorithms require the object to be filmed on 
accurately lit constant color background and produce acceptable 
yet far from ideal results since they use simple heuristics to 
compute F and α from C. 

For footage without chroma-key background rotoscoping is used, 
which means that object contours should be accurately traced in 
each frame by human operator. After the object is precisely traced 
boundary feathering can produce very good α channel, but F 
channel is again computed either by using simple heuristics or 
assumed to equal source image C. This produces halos around 
objects which are usually removed by contracting alpha matte. 
Usage of matting algorithms can significantly improve the result 
and increase working speed even if the trimap has to be hand-
drawn for each frame. 

6. CONCLUSION 

Automatic user-guided matting is important for many image- and 
video-compositing tasks. In this paper we proposed two 
improvements to Bayesian matting algorithm. We compared the 
results of improved algorithm with the original one demonstrating 
that our algorithm produces smooth alpha image and handles 
color ambiguities by propagating alpha values from nearby pixels. 
Our smoothness term significantly improves the result of 
Bayesian matting without increasing the computation time while 
the hierarchical approach effectively decreases this time still 
producing the acceptable result. This allows us to create user-
friendly matting environment for use in image and (in future) 
video processing. 
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(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

 
(i) (j) (k) (l) 

Figure 5 Examples of hierarchical Bayesian Matting. (a), (e), (i) Source Images. Car image is taken from the website of [2], flower image 
is taken from the dataset [5], and the lighthouse image is taken from [2]. (b), (f), (j) Trimaps. (c), (g), (k) Standard Bayesian Matting 
results. (d), (h), (l) Hierarchical Bayesian Matting results (composites). See Table 1 for processing time comparison.  
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