
A Combination of Hierarchical Structures and Particle Systems
for Self-Collision Detection of Deforming Objects

Masamichi Sugihara

Department of Computer Science,

University of Victoria, BC, Canada

sugihara@cs.uvic.ca

Vladimir Savchenko

Faculty of Computer and Information Sciences,

Hosei University, Tokyo, Japan

vsavchen@k.hosei.ac.jp

Abstract

In this paper, we propose an approach which combines

hierarchical structures and particle systems for self-collision

detection occurring in a deformable object. Numerous

algorithms for collision detection have been proposed in

computer graphics applications. Our algorithm exploits the

efficiency of hierarchical structures to deal with many polygons,

and particle systems because they can be used to extract

colliding polygons. We have extended these two algorithms to

deal with self-collision detection. The approach is split into two

stages. Particles are distributed on the surface of a deformable

object. Then, if the particles detect a possibility of a self-

collision, hierarchical self-collision detection is started. The

algorithm has been implemented on a square cloth model as an

example of a deformable object. We show that the algorithm

efficiently reduces self-collision detection redundancy, and yet

precisely detects self-collision events.

Keywords: Computer animation, Self-collision detection,

Deformable objects.

1. Introduction

For many years, collision detection has been a complex

problem for contemporary computer animation. Collision

detection is crucial for computer animation in order to prevent

collided objects from penetrating each other; however, this

procedure is very time consuming. Spatial pre-processed data

structures are commonly used for rigid objects, however they are

often too inefficient to be usable in interactive applications using

deforming objects.

Self-collision detection becomes very important when highly

flexible deformable objects are used. Self-collision detection is

generally more difficult than detecting collisions between

separate rigid bodies and different heuristics have been presented.

We examine only the algorithms which efficiently detect self-

collision detection.

1.1. Previous work

There are many effective algorithms for collision detection.

Collision detection algorithms have been accelerated by various

approaches based on bounding volume hierarchies, distance

fields, image-space techniques, etc. One of the collision

detection approaches is spatial partitioning proposed in [1], [2].

This approach splits 3D space into many regions in a pre-

processing step. There are several methods for splitting space,

such as using a grid, a tree, and spatial sorting methods. If there

are more than two objects in the same region, a polygon-polygon

collision check is called. This procedure leads to reducing

calculations. Algorithms for optimal spatial partitioning are also

discussed in Ray tracing [3]. Another example is a particle based

collision detection algorithm proposed in [4]. In this approach,

particles serve as a sensor which detects a collision. Two

different type particles are distributed on each object. If different

type particles close to each other, a polygon-polygon collision

check can be called. Bounding volume hierarchies [5], [6], [7],

[8] are the most efficient data structures for collision detection.

This approach composes tree structures while every node has

bounding volumes. There are many kinds of bounding volumes,

such as spheres, axis-aligned bounding boxes (AABBs), oriented

bounding boxes (OBBs), k-DOPs, and convex hulls. Those

bounding volumes are used to construct bounding volume

hierarchies. In these algorithms, if the traversal reaches a leaf

node, a polygon-polygon collision check is called.

Those algorithms are mainly for collision detection between

rigid objects. They don’t work well for self-collision detection

because they still call many redundant polygon-polygon

collision checks. Therefore, several algorithms for self-collision

detection are also proposed. Papers [9] and [10] present an

approach based on geometrical shape regularity properties. By

taking advantage of geometrical shape regularity properties and

hierarchical structures, the computation time is reduced. The

approach proposed in [11] uses chromatic decomposition. In a

pre-processing step, the mesh of a deforming object is divided

into several groups. Each group doesn’t have primitives which

are adjacent. By using these groups, the approach significantly

reduces redundant polygon-polygon collision checks.

In this paper, we present work in progress and report our

preliminary results devoted to self-collision detection of flexible

objects such as cloth. We propose a method to find a self-

collision event for deformable geometry objects. In order to

achieve interactive speeds we combine hierarchical structures

and particle systems, and present a new model of particle

interaction.

1.2. Our approach

We combine hierarchical structures and particle systems for

efficient self-collision detection. Our approach is as follows:

1. In a pre-processing step, bounding volume hierarchies of a

deformable object are pre-constructed; then a deformable

object is animated.

2. Particles are distributed on the deformable object and are

used as an initial guess for self-collision detection.

3. If the particles detect a possibility of a self-collision,

hierarchical self-collision detection is started.

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

Because our approach adopts hierarchical structures and

particle systems, we combine the advantages of these two

algorithms:

• Intelligent particles are able to detect a possible self-

collision. As a result, the time consuming self-collision

detection procedure is called far fewer times.

• A hierarchical structure is particularly beneficial for

speeding up self-collision detection when there are a large

number of objects. It also has the advantage that various

other data can be stored in each node.

The rest of the paper is as follows. In Section 2 and Section 3,

we present our approach. Section 4 contains implementation

details. In Section 5, we show examples of animation and speed

benchmarks. Section 6 presents our conclusions and future work.

2. Particle systems

We improve the particle-based approach of [4] to obtain an

initial guess for precise self-collision detection. The main idea of

the particle-based approach is that particles move around a

deformable object where they are distributed according to a

physical law. If the particles don’t detect a possibility of a self-

collision, the detection terminates.

Let us note that the approach discussed in [4] does not

provide correct collision detection for objects with highly

deformable geometry, critical for garment animation.

2.1. Particle definition

Our method differs from [4] in that we define a single type of

particle. These particles move around a deformable object,

similar to the flow of electric charges.

Additionally, for efficient self-collision detection the number

of particles is defined as equal to the number of convex parts of

the object.

2.2. Original distance and direction

An original distance and direction introduced here are

important for calculating particle interactions. The distance

between two particles is the length of the path connecting them.

In an analogy to the shortest path or geodesic, we define an

original distance as the distance along polygons of a deformable

object. In other words, for a plane, it is the distance on a

deformable object instead of a straight line as shown in Figure 1

(the blue line represents the original distance between particles).

The straight line (red line) in Figure 1 is the distance between

particles simply given by the Pythagorean Theorem. In Figure 1,

arrows show a direction. The reason why an original distance is

necessary is that self-collision more often occurs for the

polygons that are close on the straight (Red line) yet far on the

distance line along a deformable object. Particles search a

deformation object for such polygons. However, we need to

impose some rules on particles so that particles can find such

polygons. The rules adapted to particles are discussed in Section

2.3.

Figure 1: Illustration of the original distance and direction

2.3. Interaction

 Particles are affected by two types of forces, attractive forces

and repulsive forces. Attractive forces move particles close to

each other in a straight line (SL) yet far on an original distance

line (ODL). That is, attractive forces will be strong when

particles are close in an SL. In addition, attractive forces are

proportional to the distance difference between an SL and an

ODL. If the distance between particles for the ODL is equal to

the distance on the SL, attractive forces don’t work, however, if

particles are influenced by only attractive forces they

immediately gather in the one place on a deformable object.

Therefore, we add repulsive forces to affect particles. Repulsive

forces will be strong when particles are close to each other on an

ODL. As a result, these particles allow us to simulate self-

collision detection efficiently, detecting polygons close on an SL

yet far on an ODL. The total force iF which affects i-th particle

is as follows:

{ }∑
=

+⋅=
n

j

ijijijiji rorofrrsrsfatF
0

)()(,

ij

ijij

ro

rsro
t

−
= , (0≠ijro),

2
)(

r

a
rfa = ,

2
)(

r

b
rfr −= ,

where fa and fr denote functions for attraction and repulsion, rs

denotes the SL between particles, ro denotes the ODL between

particles, t is a variable, and a and b are constants. We define t as

a variable to move particles close to each other on an SL yet far

on an ODL. The denominator of t doesn’t become zero, because

one particle isn’t on the top of another. In addition, we substitute

appropriate numbers for a and b for smooth motion of particles.

In our experiments, a is 20 and b is 10. The constant substituted

for a is bigger than the constant substituted for b because the

forces which find self-collision are attractive forces. Repulsive

forces are mere forces to evenly spread particles over a

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

deformable object. The initial positions of particles don’t need to

be placed in particular positions.

2.4. Self-collision detection in particle systems

When particles start to move around a deformable object, we

have to wait for relaxation of particles. In theory, we must wait

until all particles stop moving, but it is crucial to simulate self-

collision detection in real-time. Therefore, to simulate self-

collision detection by a system of particles we define two values

Nmax and Nmin to control the relaxation of particles. Nmax is

the maximum number of particle update steps. Nmin is the

minimum number of moving particles. The algorithm is as

follows:

• The particle positions are updated until either the number

of moving particles is less than Nmin, or the number of

particle update steps is equal to Nmax.

• Then, if the distance between closest particles is less than

some tolerance distance, hierarchical self-collision

detection is called.

3. Hierarchical structures

We use bounding volume hierarchies as hierarchical

structures. The main principle of bounding volume hierarchies is

that if the parent volume of a polygon doesn’t collide with

another volume during collision detection, we don’t need to

check whether the polygon collides with another polygon.

However, even if we use bounding volume hierarchies, self-

collision isn’t detected efficiently because bounding volumes

will always find contacts between adjacent polygons. Therefore,

we will waste much time calling the polygon-polygon collision

check for all the adjacent polygons. To resolve this problem, we

include the algorithm based on geometrical shape regularity

properties (discussed in [9]) to hierarchical structures. This

algorithm requires adding information (positive vector) to every

node in a hierarchical structure. If the algorithm detects a self-

collision possibility, self-collision detection in bounding volume

hierarchies is called. Details of the algorithm are discussed in

Section 3.3. To make this paper almost self contained let us

briefly discuss hierarchical structures.

3.1. Node

Various kinds of information are assigned to every node of a

hierarchical structure. Firstly, we define the type of every node,

LEAF or NODE. According to the type, information contained

in each node is different:

• Object (Only LEAF node). This part has a polygon which

is judged whether it collides with another polygon.

• Left and Right (Only NODE node). We define that a

parent node has two child nodes. Left and Right store one

child node of the parent node respectively.

• Bounding Volume. This part has a bounding volume which

is used when whether collision detection descends to child

nodes or not are judged. We adapt AABB as a bounding

volume.

• Positive Vector. Positive Vector is used only in the

algorithm based on geometrical shape regularity

properties.

3.2. Construction of bounding volume
hierarchies

There are many methods to construct bounding volume

hierarchies, such as a top-down method and a bottom-up

method. We construct bounding volume hierarchies by using the

bottom-up method [12]. This method can construct a better tree

than another method, but implementation of this method takes

much time. However, since we construct bounding volume

hierarchies before animation, this method does not require a real-

time implementation. Although node information needs to be

updated, the structure of a bounding volume hierarchy doesn’t

need to. Thus, it doesn’t take much time to update node

information.

To construct bounding volume hierarchies by using a bottom-

up method, firstly, every polygon is covered under a bounding

volume. The volume becomes the LEAF node in a hierarchical

structure. Next, we group two nodes of a given level into a new

node of above level and repeat this process until constructing the

root node which has the volume containing all polygons. In this

time, we choose two nodes in order that the volume of a new

node is the minimum.

3.3. Self-collision detection in the algorithm
based on geometrical shape regularity
properties

 In this section, we summarize the algorithm discussed in [9].

The main principles of the algorithm are as follows:

(A) A surface is curved enough for making a “loop” and

hitting another part of the surface.

(B) The contour of a surface has such a shape that a minimal

fold will bring superposition and self-collision of the

surface.

However, in most cases, a deformable object doesn’t self-

collide in the (B) case. Therefore, we consider only the (A) case.

To test (A), we search for a vector which has positive dot

product with the normal vectors of all polygons of a deformable

object. If the vector exists, we conclude that the condition of (A)

isn’t satisfied and then there are no self-collisions on the

deformable object. We define the vector as a “positive vector.”

In addition, even if the condition of (A) is satisfied, if there

exists a positive vector in two nodes on the deformable object

surface which are adjacent (connected by at least one vertex),

there are no self-collisions of the nodes on the deformable object.

Therefore, self-collision detection in bounding volume

hierarchies is called on the surface where a positive vector

doesn’t exist.

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

3.4. Self-collision detection in bounding volume
hierarchies

When two volumes collide with each other, a search has to be

made through the hierarchical structure. There are some

methods, such as breadth-first search (BFS) and depth-first

search (DFS). We use DFS in which collision detection descends

through the child nodes until a leaf node is reached. DFS

requires a rule to define a particular child node. The search

descends to the node defined. According to the rule used, child

nodes are dynamically searched and collision detection descends

to the child nodes of the parent node which has a bigger volume

than another parent node. This rule can reduce the sum of

volumes which are used in subsequent collision detection.

Therefore, the algorithm for self-collision detection in bounding

volume hierarchies is as follows:

• When two volumes collide with each other, self-collision

detection descends to the child nodes of the parent node

which has a bigger volume than another parent node.

• If nodes of two collided volumes are LEAF nodes, a

polygon-polygon collision check is called.

4. Software implementation

The proposed algorithm has been implemented in C++, and a

deformable object and particles are visualized by OpenGL. To

implement the proposed algorithm, we have modeled a cloth as a

deformable object and simulated collision response.

4.1. Cloth modeling

We model the cloth, adopting the algorithm discussed in [13].

This algorithm is based on a mass-spring system. The cloth is

calculated by implicit integration. Implicit integration allows us

to simulate collision detection and modify polygons in which

collisions occur. This modification is repeated until all result

points are satisfied with desired positions. Additionally, we

consider stretch forces and damping forces as internal forces,

and gravity as external forces in the cloth. Under those

environments, we have implemented our algorithm.

4.2. Collision response

Once a collision is detected, we have to force the cloth not to

penetrate the obstacle. The approach of [14], is used, the part of

the cloth in collision is constrained against the obstacle and the

cloth motion is enforced. This is done by manipulating the forces

as follows. Forces can be ignored by assigning a polygon infinite

mass (1/m = 0) its acceleration becomes zero regardless of the

values of all forces exerted on it.

We apply the approach as follows. To block a polygon’s

acceleration, while the value of a mass is changed (for more

references see [14]), we modify the value of a force. We remove

the component of a force along the normal direction of an

obstacle. This equation is as follows:

(){ }nnFF
m

a
rrrrr

⋅−=
1

,

where n denotes the normal vector of an obstacle and a denotes

an acceleration.

Consequently, a polygon is prevented from accelerating

along the normal direction of an obstacle and the polygon

doesn’t penetrate the obstacle. However, if the obstacle has

acceleration, the acceleration along the normal direction of the

obstacle must be added to the polygon’s acceleration.

5. Results

The tests were performed on a PC with the Intel Core Duo

1.66Ghz processor. We tested our software using three different

arrangements of a square cloth model (shown in Figure 2). The

model is defined by 200 polygons, 121 vertices, and the

distribution of 4 particles was used. Additionally, we present

benchmarks that show the use of hierarchical structures and the

combination of hierarchical structures and particle systems.

Figure 2: Cloth model

Figure 3 shows a cloth where two diagonal corners are

constrained and benchmark results are shown in Figure 4.

Though the cloth didn’t self-collide, a polygon-polygon collision

check was called in the case of no particles. On the other hand, a

polygon-polygon collision check wasn’t called in the case of

using particles. The average time to perform collision detection

was 16ms. In this example, the combination of hierarchical

structures and particle systems (blue line) doesn’t have an active

interval, because particles don’t detect self-collision possibilities.

Figure 3: Cloth model where two diagonal corners are

constrained

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

050010001500200025003000350040004500
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400Time stepNumber of polygon-po

lygon collision check
particles no particles

Figure 4: Benchmark for Figure 3

Figure 5 shows a cloth model where a one corner is

constrained and results of this benchmark are shown in Figure 6.

The number of polygon-polygon collision checks is reduced.

This fact proves efficiency applying particle-based self-collision

detection. The average time to perform collision detection on the

active interval is 29ms.

Figure 5: Cloth model where a one corner is constrained

050010001500200025003000
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000Time stepNumber of polygon-po

lygon collision check
particles no particles

Figure 6: Benchmark for Figure 5

Figure 7 shows a cloth model where a central point is

constrained; the benchmark results are shown in Figure 8. In this

case, whether particle-based self-collision detection was used or

not, the number of polygon-polygon collision checks is identical.

This benchmark proved that particles could precisely detect self-

collision detection. The average time to perform collision

detection on active interval is 106ms.

Figure 7: Cloth model where central point is constrained

02000400060008000100001200014000160001800020000
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400Time stepNumber of polygon-p

olygon collision check
particles no particles

Figure 8: Benchmark for Figure 7

6. Conclusions and future work

In the work, we have proposed an algorithm combining

hierarchical structures and particle systems for efficient self-

collision detection. Particles smartly extract possible colliding

polygons. Additionally, hierarchical structures efficiently deal

with many polygons. In fact, after a deformable object self-

collides, our software can’t decrease processing time.

Nevertheless, before a deformable object self-collides,

combining those two algorithms allows efficiently reduce

useless self-collision detection procedures providing precise self-

collision detection.

However, there are several points which should be improved.

Firstly, the approach is not robust, after a deformable object self-

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

collides, the procedure of self-collision detection should be

enhanced. Because self-colliding polygons of a deformable

object continue to collide with each other, calculation expenses

greatly increase. However, since positional relationship between

polygons changes slowly, we suppose to cache the relationship

to reduce calculations.

Secondly, it is difficult to define appropriate values for

attractive forces and repulsive forces. In the case of uniform

grid-based collision detection, optimal grid resolution is required

in order to keep accuracy and speed up collision detection

procedures. Similarly, we have to assign appropriate values to

attractive forces and repulsive forces. Otherwise, our algorithm

doesn’t work well.

Thirdly, our algorithm has been implemented only for a cloth

model. When we have a curved surface, it is difficult to measure

an original distance on the curved surface. In order to solve this

problem, we consider invisible particles (IP). IPs are different

from particles to detect collisions (CP). One IP is allocated to

two CPs in order to calculate the original distance between the

CPs. IP is forced to move from one CP to another CP. In

addition, an IP can move only on the surface of an object. After

an IP reaches a CP, we calculate the distance of the path along

which the IP passed. By using this algorithm, we are planning to

investigate applicability of the proposed approach for objects

with changing topology in the future.

7. References

[1] R. Bigliani and J. W. Eischen, Collision Detection in Cloth

Modeling, chapter in Cloth Modeling and Animation, A. K.

Peters, pp. 197-217, 2000.

[2] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi, I-

collide: An Interactive and Exact Collision Detection System for

Large-scale Environments, In Proceedings of ACM International

3D Graphics Conference, pp. 189-196, 1995.

[3] V. Havran and F. Sixta, Comparison of Hierarchical Grids,

Ray Tracing News, 1999.

[4] M. Senin, N. Kojekine, V. Savchenko, and I. Hagiwara,

Particle-based Collision Detection, In short papers proceedings

of Eurographics EG2003, pp. 1-8, 2003.

[5] P. M. Hubbard, Collision Detection for Interactive Graphics

Applications, IEEE Transactions on Visualization and Computer

Graphics, pp. 218-230, 1995.

[6] G. van den Bergen, Efficient Collision Detection of Complex

Deformable Models Using AABB Trees, Journal of Graphics

Tools, pp. 1-14, 1997.

[7] S. Gottschalk, M. C. Lin, and D. Manocha, OBB-Tree: A

Hierarchical Structure for Rapid Interference Detection, In

Proceedings of ACM SIGGRAPH, pp. 171-180, 1996.

[8] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and

K. Zikan, Efficient Collision Detection Using Bounding Volume

Hierarchies of k-DOPs, IEEE Transactions on Visualization and

Computer Graphics, pp. 21-36, 1998.

[9] P. Volino and N. Magnenat Thalmann, Efficient Self-

Collision Detection on Smoothly Discretized Surface

Animations using Geometrical Shape Regularity, Computer

Graphics Forum (EuroGraphics Proceedings), pp. 155-166,

1994.

[10] P. Volino, M. Courchesne, and N. Magnenat Thalmann,

Versatile and Efficient Techniques for Simulating Cloth and

Other Deformable Objects, In Proceedings of ACM

SIGGRAPH, pp. 137-144, 1995.

[11] N. K. Govindaraju, D. Knott, N. Jain, I. Kabul, R. Tamstorf,

R. Gayle, M. C. Lin, and D. Manocha, Interactive Collision

Detection between Deformable Models using Chromatic

Decomposition, ACM Transactions on Graphics, pp. 991-999,

2005.

[12] S. M. Omohundro, Five Balltree Construction Algorithms,

Thechnical Report TR-89-063, International Computer Science

Institute, Berkeley, CA, 1989.

[13] M. Desbrun, P. Schroder, and A. Barr, Interactive

Animation of Structured Deformable Objects, In Proceedings of

Graphics Interface ’99, pp. 1-8, 1999.

[14] D. Baraff and A. Witkin, Large Steps in Cloth Simulation,

In Proceedings of ACM SIGGRAPH, pp. 43–54, 1998.

GraphiCon'2007 Russia, Moscow, June 23-27, 2007

