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Abstract 
 

In this paper, we propose an approach which combines 

hierarchical structures and particle systems for self-collision 

detection occurring in a deformable object. Numerous 

algorithms for collision detection have been proposed in 

computer graphics applications. Our algorithm exploits the 

efficiency of hierarchical structures to deal with many polygons, 

and particle systems because they can be used to extract 

colliding polygons. We have extended these two algorithms to 

deal with self-collision detection. The approach is split into two 

stages. Particles are distributed on the surface of a deformable 

object. Then, if the particles detect a possibility of a self-

collision, hierarchical self-collision detection is started. The 

algorithm has been implemented on a square cloth model as an 

example of a deformable object. We show that the algorithm 

efficiently reduces self-collision detection redundancy, and yet 

precisely detects self-collision events. 

Keywords: Computer animation, Self-collision detection, 

Deformable objects. 

 

1. Introduction 
 

For many years, collision detection has been a complex 

problem for contemporary computer animation. Collision 

detection is crucial for computer animation in order to prevent 

collided objects from penetrating each other; however, this 

procedure is very time consuming. Spatial pre-processed data 

structures are commonly used for rigid objects, however they are 

often too inefficient to be usable in interactive applications using 

deforming objects.  

Self-collision detection becomes very important when highly 

flexible deformable objects are used. Self-collision detection is 

generally more difficult than detecting collisions between 

separate rigid bodies and different heuristics have been presented. 

We examine only the algorithms which efficiently detect self-

collision detection. 

 

1.1. Previous work 
 

There are many effective algorithms for collision detection. 

Collision detection algorithms have been accelerated by various 

approaches based on bounding volume hierarchies, distance 

fields, image-space techniques, etc. One of the collision 

detection approaches is spatial partitioning proposed in [1], [2]. 

This approach splits 3D space into many regions in a pre-

processing step. There are several methods for splitting space, 

such as using a grid, a tree, and spatial sorting methods. If there 

are more than two objects in the same region, a polygon-polygon 

collision check is called. This procedure leads to reducing 

calculations. Algorithms for optimal spatial partitioning are also 

discussed in Ray tracing [3]. Another example is a particle based 

collision detection algorithm proposed in [4]. In this approach, 

particles serve as a sensor which detects a collision. Two 

different type particles are distributed on each object. If different 

type particles close to each other, a polygon-polygon collision 

check can be called. Bounding volume hierarchies [5], [6], [7], 

[8] are the most efficient data structures for collision detection. 

This approach composes tree structures while every node has 

bounding volumes. There are many kinds of bounding volumes, 

such as spheres, axis-aligned bounding boxes (AABBs), oriented 

bounding boxes (OBBs), k-DOPs, and convex hulls. Those 

bounding volumes are used to construct bounding volume 

hierarchies. In these algorithms, if the traversal reaches a leaf 

node, a polygon-polygon collision check is called.  

Those algorithms are mainly for collision detection between 

rigid objects. They don’t work well for self-collision detection 

because they still call many redundant polygon-polygon 

collision checks. Therefore, several algorithms for self-collision 

detection are also proposed. Papers [9] and [10] present an 

approach based on geometrical shape regularity properties. By 

taking advantage of geometrical shape regularity properties and 

hierarchical structures, the computation time is reduced. The 

approach proposed in [11] uses chromatic decomposition. In a 

pre-processing step, the mesh of a deforming object is divided 

into several groups. Each group doesn’t have primitives which 

are adjacent. By using these groups, the approach significantly 

reduces redundant polygon-polygon collision checks. 

In this paper, we present work in progress and report our 

preliminary results devoted to self-collision detection of flexible 

objects such as cloth.  We propose a method to find a self-

collision event for deformable geometry objects. In order to 

achieve interactive speeds we combine hierarchical structures 

and particle systems, and present a new model of particle 

interaction. 

 

1.2. Our approach 
 

We combine hierarchical structures and particle systems for 

efficient self-collision detection. Our approach is as follows:  

 

1. In a pre-processing step, bounding volume hierarchies of a 

deformable object are pre-constructed; then a deformable 

object is animated. 

 

2. Particles are distributed on the deformable object and are 

used as an initial guess for self-collision detection. 

 

3. If the particles detect a possibility of a self-collision, 

hierarchical self-collision detection is started.  
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Because our approach adopts hierarchical structures and 

particle systems, we combine the advantages of these two 

algorithms: 

 

• Intelligent particles are able to detect a possible self-

collision. As a result, the time consuming self-collision 

detection procedure is called far fewer times. 

 

• A hierarchical structure is particularly beneficial for 

speeding up self-collision detection when there are a large 

number of objects.  It also has the advantage that various 

other data can be stored in each node. 

  

The rest of the paper is as follows. In Section 2 and Section 3, 

we present our approach.  Section 4 contains implementation 

details. In Section 5, we show examples of animation and speed 

benchmarks. Section 6 presents our conclusions and future work. 

 

2. Particle systems 
 

We improve the particle-based approach of [4] to obtain an 

initial guess for precise self-collision detection. The main idea of 

the particle-based approach is that particles move around a 

deformable object where they are distributed according to a 

physical law. If the particles don’t detect a possibility of a self-

collision, the detection terminates. 

Let us note that the approach discussed in [4] does not 

provide correct collision detection for objects with highly 

deformable geometry, critical for garment animation.  

 

2.1. Particle definition 
 

Our method differs from [4] in that we define a single type of 

particle. These particles move around a deformable object, 

similar to the flow of electric charges. 

Additionally, for efficient self-collision detection the number 

of particles is defined as equal to the number of convex parts of 

the object.  

 

2.2. Original distance and direction 
 

An original distance and direction introduced here are 

important for calculating particle interactions. The distance 

between two particles is the length of the path connecting them. 

In an analogy to the shortest path or geodesic, we define an 

original distance as the distance along polygons of a deformable 

object. In other words, for a plane, it is the distance on a 

deformable object instead of a straight line as  shown in Figure 1 

(the blue line represents the original distance between particles).  

The straight line (red line) in Figure 1 is the distance between 

particles simply given by the Pythagorean Theorem. In Figure 1, 

arrows show a direction. The reason why an original distance is 

necessary is that self-collision more often occurs for the 

polygons that are close on the straight (Red line) yet far on the 

distance line along a deformable object. Particles search a 

deformation object for such polygons. However, we need to 

impose some rules on particles so that particles can find such 

polygons. The rules adapted to particles are discussed in Section 

2.3.  

 

 
 

Figure 1: Illustration of the original distance and direction 

 

2.3. Interaction 
 

     Particles are affected by two types of forces, attractive forces 

and repulsive forces. Attractive forces move particles close to 

each other in a straight line (SL) yet far on an original distance 

line (ODL). That is, attractive forces will be strong when 

particles are close in an SL. In addition, attractive forces are 

proportional to the distance difference between an SL and an 

ODL. If the distance between particles for the ODL is equal to 

the distance on the SL, attractive forces don’t work, however, if 

particles are influenced by only attractive forces they 

immediately gather in the one place on a deformable object. 

Therefore, we add repulsive forces to affect particles. Repulsive 

forces will be strong when particles are close to each other on an 

ODL. As a result, these particles allow us to simulate self-

collision detection efficiently, detecting polygons close on an SL 

yet far on an ODL. The total force iF which affects i-th particle 

is as follows: 
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where fa and fr denote functions for attraction and repulsion, rs 

denotes the SL between particles, ro denotes the ODL between 

particles, t is a variable, and a and b are constants. We define t as 

a variable to move particles close to each other on an SL yet far 

on an ODL. The denominator of t doesn’t become zero, because 

one particle isn’t on the top of another. In addition, we substitute 

appropriate numbers for a and b for smooth motion of particles. 

In our experiments, a is 20 and b is 10. The constant substituted 

for a is bigger than the constant substituted for b because the 

forces which find self-collision are attractive forces. Repulsive 

forces are mere forces to evenly spread particles over a 
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deformable object. The initial positions of particles don’t need to 

be placed in particular positions. 

 

2.4. Self-collision detection in particle systems 
 

When particles start to move around a deformable object, we 

have to wait for relaxation of particles. In theory, we must wait 

until all particles stop moving, but it is crucial to simulate self-

collision detection in real-time. Therefore, to simulate self-

collision detection by a system of particles we define two values 

Nmax and Nmin to control the relaxation of particles. Nmax is 

the maximum number of particle update steps. Nmin is the 

minimum number of moving particles. The algorithm is as 

follows: 

 

• The particle positions are updated until either the number 

of moving particles is less than Nmin, or the number of 

particle update steps is equal to Nmax. 

 

• Then, if the distance between closest particles is less than 

some tolerance distance, hierarchical self-collision 

detection is called. 

 

3. Hierarchical structures 
 

We use bounding volume hierarchies as hierarchical 

structures. The main principle of bounding volume hierarchies is 

that if the parent volume of a polygon doesn’t collide with 

another volume during collision detection, we don’t need to 

check whether the polygon collides with another polygon. 

However, even if we use bounding volume hierarchies, self-

collision isn’t detected efficiently because bounding volumes 

will always find contacts between adjacent polygons. Therefore, 

we will waste much time calling the polygon-polygon collision 

check for all the adjacent polygons. To resolve this problem, we 

include the algorithm based on geometrical shape regularity 

properties (discussed in [9]) to hierarchical structures. This 

algorithm requires adding information (positive vector) to every 

node in a hierarchical structure. If the algorithm detects a self-

collision possibility, self-collision detection in bounding volume 

hierarchies is called. Details of the algorithm are discussed in 

Section 3.3. To make this paper almost self contained let us 

briefly discuss hierarchical structures.  

 

3.1. Node 
 

Various kinds of information are assigned to every node of a 

hierarchical structure. Firstly, we define the type of every node, 

LEAF or NODE. According to the type, information contained 

in each node is different: 

 

• Object (Only LEAF node). This part has a polygon which 

is judged whether it collides with another polygon.  

 

• Left and Right (Only NODE node). We define that a 

parent node has two child nodes. Left and Right store one 

child node of the parent node respectively. 

 

 

 

• Bounding Volume. This part has a bounding volume which 

is used when whether collision detection descends to child 

nodes or not are judged. We adapt AABB as a bounding 

volume. 

 

• Positive Vector. Positive Vector is used only in the 

algorithm based on geometrical shape regularity 

properties.  

 

3.2. Construction of bounding volume 
hierarchies 

 

There are many methods to construct bounding volume 

hierarchies, such as a top-down method and a bottom-up 

method. We construct bounding volume hierarchies by using the 

bottom-up method [12]. This method can construct a better tree 

than another method, but implementation of this method takes 

much time. However, since we construct bounding volume 

hierarchies before animation, this method does not require a real-

time implementation. Although node information needs to be 

updated, the structure of a bounding volume hierarchy doesn’t 

need to. Thus, it doesn’t take much time to update node 

information. 

To construct bounding volume hierarchies by using a bottom-

up method, firstly, every polygon is covered under a bounding 

volume. The volume becomes the LEAF node in a hierarchical 

structure. Next, we group two nodes of a given level into a new 

node of above level and repeat this process until constructing the 

root node which has the volume containing all polygons. In this 

time, we choose two nodes in order that the volume of a new 

node is the minimum.  

 

3.3. Self-collision detection in the algorithm 
based on geometrical shape regularity 
properties 

  In this section, we summarize the algorithm discussed in [9]. 

The main principles of the algorithm are as follows: 

 

(A) A surface is curved enough for making a “loop” and 

hitting another part of the surface. 

 

(B) The contour of a surface has such a shape that a minimal 

fold will bring superposition and self-collision of the 

surface. 

 

However, in most cases, a deformable object doesn’t self-

collide in the (B) case. Therefore, we consider only the (A) case. 

To test (A), we search for a vector which has positive dot 

product with the normal vectors of all polygons of a deformable 

object. If the vector exists, we conclude that the condition of (A) 

isn’t satisfied and then there are no self-collisions on the 

deformable object. We define the vector as a “positive vector.” 

In addition, even if the condition of (A) is satisfied, if there 

exists a positive vector in two nodes on the deformable object 

surface which are adjacent (connected by at least one vertex), 

there are no self-collisions of the nodes on the deformable object. 

Therefore, self-collision detection in bounding volume 

hierarchies is called on the surface where a positive vector 

doesn’t exist.  
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3.4. Self-collision detection in bounding volume 
hierarchies 

 

When two volumes collide with each other, a search has to be 

made through the hierarchical structure. There are some 

methods, such as breadth-first search (BFS) and depth-first 

search (DFS). We use DFS in which collision detection descends 

through the child nodes until a leaf node is reached. DFS 

requires a rule to define a particular child node. The search 

descends to the node defined. According to the rule used, child 

nodes are dynamically searched and collision detection descends 

to the child nodes of the parent node which has a bigger volume 

than another parent node. This rule can reduce the sum of 

volumes which are used in subsequent collision detection. 

Therefore, the algorithm for self-collision detection in bounding 

volume hierarchies is as follows: 

 

• When two volumes collide with each other, self-collision 

detection descends to the child nodes of the parent node 

which has a bigger volume than another parent node. 

 

• If nodes of two collided volumes are LEAF nodes, a 

polygon-polygon collision check is called. 

 

4. Software implementation 
 

The proposed algorithm has been implemented in C++, and a 

deformable object and particles are visualized by OpenGL. To 

implement the proposed algorithm, we have modeled a cloth as a 

deformable object and simulated collision response.  

 

4.1. Cloth modeling 
 

We model the cloth, adopting the algorithm discussed in [13]. 

This algorithm is based on a mass-spring system. The cloth is 

calculated by implicit integration. Implicit integration allows us 

to simulate collision detection and modify polygons in which 

collisions occur. This modification is repeated until all result 

points are satisfied with desired positions. Additionally, we 

consider stretch forces and damping forces as internal forces, 

and gravity as external forces in the cloth. Under those 

environments, we have implemented our algorithm. 

 

4.2. Collision response 
 

Once a collision is detected, we have to force the cloth not to 

penetrate the obstacle. The approach of [14], is used, the part of 

the cloth in collision is constrained against the obstacle and the 

cloth motion is enforced. This is done by manipulating the forces 

as follows. Forces can be ignored by assigning a polygon infinite 

mass (1/m = 0)  its acceleration becomes zero regardless of the 

values of all forces exerted on it.  

We apply the approach as follows. To block a polygon’s 

acceleration, while the value of a mass is changed (for more 

references see [14]), we modify the value of a force. We remove 

the component of a force along the normal direction of an 

obstacle. This equation is as follows: 
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where n denotes the normal vector of an obstacle and a  denotes 

an acceleration.  

Consequently, a polygon is prevented from accelerating 

along the normal direction of an obstacle and the polygon 

doesn’t penetrate the obstacle. However, if the obstacle has 

acceleration, the acceleration along the normal direction of the 

obstacle must be added to the polygon’s acceleration. 

 

5. Results 
 

The tests were performed on a PC with the Intel Core Duo 

1.66Ghz processor. We tested our software using three different 

arrangements of a square cloth model (shown in Figure 2). The 

model is defined by 200 polygons, 121 vertices, and the 

distribution of 4 particles was used. Additionally, we present 

benchmarks that show the use of hierarchical structures and the 

combination of hierarchical structures and particle systems. 

 

 
 

Figure 2: Cloth model 

 

Figure 3 shows a cloth where two diagonal corners are 

constrained and benchmark results are shown in Figure 4. 

Though the cloth didn’t self-collide, a polygon-polygon collision 

check was called in the case of no particles. On the other hand, a 

polygon-polygon collision check wasn’t called in the case of 

using particles.  The average time to perform collision detection 

was 16ms. In this example, the combination of hierarchical 

structures and particle systems (blue line) doesn’t have an active 

interval, because particles don’t detect self-collision possibilities. 

 

 
 

Figure 3: Cloth model where two diagonal corners are 

constrained 
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Figure 4: Benchmark for Figure 3 

 

Figure 5 shows a cloth model where a one corner is 

constrained and results of this benchmark are shown in Figure 6. 

The number of polygon-polygon collision checks is reduced. 

This fact proves efficiency applying particle-based self-collision 

detection. The average time to perform collision detection on the 

active interval is 29ms. 

 

 
 

Figure 5: Cloth model where a one corner is constrained 
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Figure 6: Benchmark for Figure 5 

 

Figure 7 shows a cloth model where a central point is 

constrained; the benchmark results are shown in Figure 8. In this 

case, whether particle-based self-collision detection was used or 

not, the number of polygon-polygon collision checks is identical. 

This benchmark proved that particles could precisely detect self-

collision detection. The average time to perform collision 

detection on active interval is 106ms. 

 

 
 

Figure 7: Cloth model where central point is constrained 
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Figure 8: Benchmark for Figure 7 

 

6. Conclusions and future work 
 

In the work, we have proposed an algorithm combining 

hierarchical structures and particle systems for efficient self-

collision detection. Particles smartly extract possible colliding 

polygons. Additionally, hierarchical structures efficiently deal 

with many polygons. In fact, after a deformable object self-

collides, our software can’t decrease processing time. 

Nevertheless, before a deformable object self-collides, 

combining those two algorithms allows efficiently reduce 

useless self-collision detection procedures providing precise self-

collision detection.  

However, there are several points which should be improved. 

Firstly, the approach is not robust, after a deformable object self-
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collides, the procedure of self-collision detection should be 

enhanced. Because self-colliding polygons of a deformable 

object continue to collide with each other, calculation expenses 

greatly increase. However, since positional relationship between 

polygons changes slowly, we suppose to cache the relationship 

to reduce calculations.  

Secondly, it is difficult to define appropriate values for 

attractive forces and repulsive forces. In the case of uniform 

grid-based collision detection, optimal grid resolution is required 

in order to keep accuracy and speed up collision detection 

procedures. Similarly, we have to assign appropriate values to 

attractive forces and repulsive forces. Otherwise, our algorithm 

doesn’t work well.  

Thirdly, our algorithm has been implemented only for a cloth 

model. When we have a curved surface, it is difficult to measure 

an original distance on the curved surface. In order to solve this 

problem, we consider invisible particles (IP). IPs are different 

from particles to detect collisions (CP). One IP is allocated to 

two CPs in order to calculate the original distance between the 

CPs. IP is forced to move from one CP to another CP. In 

addition, an IP can move only on the surface of an object. After 

an IP reaches a CP, we calculate the distance of the path along 

which the IP passed. By using this algorithm, we are planning to 

investigate applicability of the proposed approach for objects 

with changing topology in the future. 
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