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Abstract 
This paper discusses a framework for integrated Augmented Reality 
(AR) architecture for indoor thermal performance data visualization 
that utilizes a mobile robot to generate environment maps. It consists 
of three modules: robot mapping, Computational Fluid Dynamics 
(CFD) simulation, and AR visualization. The robot mapping module 
enables the modelling of spatial geometry using a mobile robot. In 
order to generate steady approximations to scanned 3D datasets, the 
paper presents a novel “Split and Merge Expectation-Maximization 
Patch Fitting” (SMEMPF) planar approximation method. The 
developed SMEMPF method extends the classical Expectation-
Maximization (EM) algorithm. It allows for precise adjustment of 
patches independent from the initial model. The final result is a set of 
patches identifying planar macro structures that consist of a 
collection of supported tiles. These patches are utilized to model the 
spatial geometry under investigation.   
The CFD simulation module facilitates the prediction of building 
performance data based on the spatial data generated using the 
SMEMPF method. The AR visualization module assists in 
interactive, immersive visualization of CFD simulation results. Such 
an integrated AR architecture will facilitate rapid multi-room mobile 
AR visualizations. 
Keywords: 3D Robot Mapping, EM, Augmented Reality, Immersive 
Building Simulation, CFD. 
 
1. INTRODUCTION 
Augmented Reality is typically used to visualize scientific data, often 
complex numerical representations plotted in 3D space. It involves 
the coordination of a number of issues related to AR technology and 
the type of data to be visualized. Issues related to AR technology 
include elimination of latency and registration errors, appropriate 
selection of motion trackers, etc. Data types for AR visualization 
consist of spatial and scientific data. Spatial data consists of data 
related to the space (dimensions, inlet / outlet positions, etc) whereas 
scientific data relies on the type of analyses (indoor thermal, lighting, 
ventilation performance datasets, etc).  
 
Several research efforts have been established to visualize simulation 
results in immersive environments such as virtual wind tunnel [1], 
structural analysis [2], building performance [3,4], etc. CFD 
simulation is employed to iteratively solve complex heat-mass 
transfer equations. It involves the ability to evaluate a series of 
decisions, through setting up initial / boundary conditions, fluid 
properties, discretization schemes, turbulence models, and 
approximations. It is extensively used in aerospace, nuclear, 
automotive, biomedical, environmental, microelectronics, industries, 
etc. CFD simulation is also performed for building facilities to assess 
the response of the built environment to specified external 
conditions. Such simulations aid the design decision-making process 

for architects and engineers at various stages of building design 
based on thermal performance. Simulations that use Virtual Reality 
(VR) or AR environments to visualize and interact with thermal 
datasets, in addition to HCI, are referred to as Immersive Building 
Simulations [5]. 
 
In addition to immersive environments and CFD, Human-Computer 
Interaction (HCI) technologies such as speech / gesture recognition 
and eye movement tracking can play a vital role in enabling efficient 
data manipulation while still being immersed in the environment. 
Integration of such techniques will aid real-time data interactivity. 
For buildings, such interactions will facilitate potential applications 
such as on-site prototyping and diagnostics of Heating, Ventilation, 
and Air Conditioning (HVAC) system, etc.  
 
Mobile robots have been widely used for generating environment 
maps [6-8]. The mapping includes simultaneous estimation of the 
robot position and generating the environment map using sensory 
input using laser feedback. Such mapping is achieved either by 
employing a set of robots or a single robot. In the case of multiple 
robots, partial maps constructed from range sensor data are 
exchanged with other robots to study shape similarities for overall 
spatial map creation. On the other hand, a single robot requires 
multiple runs to generate a similar map. As the robot traverses the 
space, raw 3D datasets are acquired in real time. A compact 
environment map composed of few generalized polylines is obtained 
by converting the raw 3D datasets. Several 3D mapping approaches 
exist, including Hough transformation, grid-based and EM-based 
algorithms [9-15]. Although these approaches facilitate such data 
translations, they build in assumptions such as the number of fitted 
patches, extent of noise, and/or the order of data points. 
 
This paper discusses a framework for integrated Augmented Reality 
architecture for indoor thermal performance data visualization that 
utilizes a mobile robot to generate the spatial data. The mobile AR 
architecture consists of three modules: robot mapping, CFD 
simulation, and AR visualization. The robot mapping module enables 
the modelling of spatial geometry using a mobile robot. It employs a 
mobile robot to incrementally scan the room using range sensors in 
real time. To generate steady approximations to acquired 3D data 
points, the paper presents a novel Split and Merge Expectation-
Maximization Patch Fitting planar approximation method. The 
SMEMPF method extends the classical EM algorithm. It allows for 
precise adjustment of patches, independent from the initial model. 
The final result is a set of patches identifying planar macro structures 
(e.g. walls) that consist of a collection of (coplanar) supported tiles. 
These patches are utilized to model the spatial geometry under 
investigation.  The CFD simulation module facilitates the prediction 
of building performance data based on the spatial data generated 
using the SMEMPF method. The AR visualization module assists in 
interactive, immersive visualization of CFD datasets. Such an 
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integrated AR architecture will facilitate rapid multi-room mobile 
AR visualization. 
2. INTEGRATED MOBILE AUGMENTED REALITY  
The integrated mobile AR for immersive building simulation enables 
interactive, immersive visualization of indoor thermal datasets. It 
consists of three modules: robot mapping, CFD simulation, and AR 
visualization, figure 1.  

 

Figure 1: Integrated mobile AR system modules. 
 
The robot mapping module enables the spatial geometry modelling. 
It employs the SMEMPF method to convert raw 3D datasets to 
model the spatial geometry. This data is critical for subsequent CFD 
simulation and AR visualization modules. For CFD simulation, the 
acquired spatial data is utilized to create a mesh (model setup) that 
allows model representation for simulation purposes. Any 
inaccuracies and uncertainties in data will corrupt the credibility of 
simulation results. For AR visualization, the spatial data is employed 
to register virtual objects with the real world. Erroneously generated 
spatial data will amplify registration errors during immersive 
visualization. 
 
The CFD simulation module facilities prediction of thermal 
performance data based on laser range information acquired by the 
robot and boundary conditions. The AR visualization module assists 
in interactive, immersive visualization of CFD datasets with the aid 
of see-through Head Mounted Device (HMD), magnetic motion 
trackers, and gesture-recognition. The advantage of such an 
integrated AR architecture is the uninterrupted interactive, immersive 
visualization for multi-room settings. 
 
2.1 Robot Mapping Module 
Earlier mobile AR approaches for building performance simulations 
used hard-coded spatial data [16]. Such implementations render 
immersive visualizations for multi-room settings difficult. A mobile 
robot equipped with a laser can aid in gathering precise spatial 
geometry in real time. The robot incrementally builds a map from 
laser data that is composed of 3D datasets [17]. A compact 
environment map composed of few generalized polylines is obtained 
by converting the raw 3D datasets acquired from a range sensor. This 

data can be used in CFD simulation and AR visualization modules 
for interactive, immersive visualization. 
 
To generate steady approximations to robot acquired 3D datasets 
without assumptions and to avoid local optimal solutions, a Split and 
Merge Expectation-Maximization Patch Fitting planar approximation 
method was developed. It extends the EM algorithm that provides an 
iterative solution to compute maximum likelihood estimates given 
incomplete samples [18].The core of EM procedure is simple least 
square fitting which is dimension independent, hence plane fitting is 
the 3D version of line fitting.  Three-dimensional EM fits (infinite) 
planes to the data given. Taking a set of data points in 3D space and 
an initial set of 2D planes as input, the algorithm alternates two steps, 
“E-step” (Expectation) and “M-step” (Maximization), until it 
converges. The algorithm is guaranteed to converge to some local 
optimum.  
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E-Step Given a current set of planes, for each point the 

probabilities of its correspondences to all planes are 
estimated based on its distances to planes. 

M-Step Given the probabilities computed in the E-step, the new 
positions of the planes are computed using a regression 
weighted with these probabilities. 

 
The SMEMPF method adds two new steps, “split” and “merge,” to 
the EM algorithm. In the first step (“split”), the model components 
(i.e. the patches) obtained by a previous EM iteration are examined 
for support of the data points. A higher and homogeneous point 
density around a patch indicates a presence of a linear structure in the 
data points. Parts of the components that do not have sufficient 
support are removed, leading to component splitting and removal. 
This results in a new set of model components for the next EM 
iteration. In the second step (“merge”), similar model components are 
merged together. The “merge” steop prevents generating statistical 
models that overfit the data, i.e., fit noise in the data. This step 
requires a similarity measure of patches and is based on the similarity 
on principles of perceptual grouping used to merge pairs of patches, 
visually belonging together, to a single patch. The advantage of the 
SMEMPF method is that the final number of fitted patches is not pre-
determined but depends on the objects represented by the data and 
the extent of noise in the data. In other words, the number of model 
components is adjusted to achieve the best possible approximation 
accuracy as a function of noise extent. 
 
The data structure utilized to fit the data is a set of planar rectangles, 
referred to as “patches,” which are subsets of the planes computed 
by the general EM. To be more versatile, each patch is subdivided 
into a grid of “tiles,” figure 2. The number of data points close to the 
respective tile distinguishes “supported” and “unsupported” tiles. All 
computations are processed on the set of supported tiles, e.g. the 
distance of a point to a patch is the distance of the point to the closest 
supported tile. The grid size (G) of a patch defines the length of the 
edges of its tiles and boundary tiles are resized to fit the patch as 
necessary. The final result of the modified EM is a set of patches 
identifying planar macro structures (e.g. walls) that consist of a 
collection of (coplanar) supported tiles. The tiles identify the shape 
of these structures in a granularity or resolution determined by the 
patch's grid size. 
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Figure 2: Patch with supported tiles. The outer rectangle is the patch, 

the dark inside rectangles are supported tiles. All tiles are of same 
size, with the exception of boundary tiles, being resized to fit the 

patch. 
 
SMEMPF Planar Approximation Method 
The SMEMPF planar approximation method comprises non-
reversible Patch Split (PS) and Patch Merge (PM) steps alternating 
with an EM Patch Fitting (EMPF) algorithm, figure 3. In the PS step, 
the quality of the EMPF output is evaluated, i.e., how well the EM 
positioned the new patches. Patches will be split into multiple 
patches based on the distribution of supported tiles. If a patch 
contains a large number / area of unsupported tiles, it will be split 
into multiple coplanar patches to allow a better fit of the supported 
tiles to the data in the next EMPF step. Hence, PS creates a higher 
number of patches in order to optimally fit the input data points; the 
number of patches is not constant, as it is in classical EM. The 
problem of local optimal solutions as appearing in the classical EM 
due to a wrongly defined number (too low) of fitting patches is 
overcome, since such a solution will not have a good global support 
in the data points. In addition to the starting number of patches, the 
initial position of the patches also does not matter, since the 
following EMPF will reposition the split patches to better fit the data.  

 
Figure 3: SMEMPF planar approximation method. 

 
In the PM step, the pairs of similar patches are merged to single 
patches. Due to this process, the number of patches cannot grow to 
infinity. Hence, the number and position of the new patches 
introduced by the split is not critical in the modified EM framework. 
Iterating split and merge in the EM framework is a powerful tool to 
adjust the number and position of patches to better fit the data points.  
 
After a few iterations, the SMEMPF converges and the PS procedure 
stops splitting if a certain goodness of fit criterion is met. The stop 
condition is the stability of distances of data points to the closest 
patches. At certain instances, in between the iterations, patches are 
added if a high number of points not supporting any patches are 
found. This situation can occur if the initial patch setup is placed far 
away from certain data points. The following subsections discuss in 
detail the SMEMPF steps – EMPF, PS, and PM, in addition to grid 
size and experimental results conducted to evaluate SMEMPF’s 
performance. 
 
 
 

2.1.1 Expectation-Maximization Patch Fitting 
EMPF is modified from the general EM plane fitting to work with 
patches. It is composed of three steps, 
 

Step 1 E-step with patches (the EM probabilities are computed 
based on the point distances to sets of supported tiles). 

Step 2 M-step with the probabilities computed in the E-step, 
resulting in infinite planes containing the new patches. 

Step 3 Trimming planes to patches and determining supported tiles. 
It includes two sub-steps, 
Step 3.A: Trimming planes to patches (the planes to patches 
and tiles by distance projection). 
Step 3.B: Determining of supported tiles (assignment of 
supporting data points to planes. 

 
Step 1: E-step  
Let a1,..., am be a set of data points in 3D space, and let s1,...,sn be a 
set of patches. Usually m is significantly larger than n. For each point 
ai, the probability pij  that ai corresponds to patch sj is computed for 
j=1..n. 
 
Formally, pij = p(zi=j), where zi is the hidden variable associated 
with point ai whose values range over the patch indices. Analog to 
EM plane fitting, this probability is computed based on the distance 
d(ai,sj) from point ai to patch sj, i.e. the distance to the closest 
supported tile in patch sj 

:  
pij ~ exp(- (d(ai,sj)2 / 2S2)                      (1) 

 
and normalized so that ∑j=1..n pij= 1 for each i. 
 
The standard deviation (S) in eq. (1) scales the weights pij with 
respect to the patch's grid size (G) in a way that points in distance G 
have a constant weight W (in our system 1/100) before normalization. 
This guarantees independence from the data points' scale and, since 
G is decreasing during the iterative EM process, emphasizes the role 
of local support (i.e. closer) points to determine the planes' positions 
during the iteration. S is computed by, 

EM PATCH
FITTING

EM PATCH
FITTING

PATCH MERGEPATCH SPLIT

S = G/sqrt(-2 log(W))                                  (2) 
 
(Substituting S in (1) with the right side of (2) yields W for 
d(ai,sj)=G). 
 
Therefore, the two differences to the standard EM plane fitting are 
first the replacement of the distance point to plane with the distance 
point to closest supported tile in a patch, and second, the use of a 
distance scaling factor S. After every E-step, a matrix (pij) is 
generated, with each row i representing the patch affiliation 
probabilities for point ai, also referred to as the “support” of point ai 
for the patches sj. Each column j can be seen as a set of weights 
representing the influence of each point on the computation of a new 
patch position in the M-step. 
 
Step 2: M-step  
The output of the M-step, which performs an orthogonal regression 
weighted with (pij), is a set of (untrimmed) planes e1, ... , en 
corresponding to the input patches s1, ... , sn. The normal vector to the 
plane ej is the eigenvector to the smallest eigenvalue of the matrix Mj 
defined as (all sums to be read as  ∑i=1..m): 
 
∑ pij(aix-X)2 ∑ pij(aix-X) (aiy-Y) ∑ pij(aix-X) (aiz-Z) 
∑ pij(aiy-Y) (aix-X) ∑ pij(aiy-Y)2 ∑ pij(aiy-Y) (aiz-Z) 
∑ pij(aiz-Z) (aix-X) ∑ pij(aiz-Z) (aiy-Y) ∑ pij(aiz-Z)2
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where ai=(aix, aiy) are the coordinates of the data points, and (X,Y) is 
their average weighted with pij for i= 1...n. (X,Y) also defines a point 
on  plane ej , hence the plane ej is uniquely defined by (X,Y) and M. 
Step 3.A:  Trimming Planes to Patches 
In order to trim the planes to patches with supported tiles, max. 
supporting data points to planes need to be assigned. This assignment 
is based on the probabilities computed in the E-step. A support set 
S(sj) for a given plane ej is defined as a set of points whose 
probability of supporting plane ej is the largest (in comparison to 
other planes),  

S(ej)={ai : pij = max (pi1, ..., pin) }                       (3) 
 
A point ai supports a plane ej if ai ∈ S(ej).  
 
Trimming the planes to patches is a simple step now, using the 
support set S. For each j, we define the set SP(ej) as the set S(ej) 
projected (orthogonal) onto the plane ej. The trimmed patch sj is the 
minimum bounding rectangle of SP(ej), with one edge direction 
defined by the principal axis of SP(ej) . A set of patches is generated, 
s1, ... , sn with sj ⊂ ej. 
 
The support set for each patch is simply the support set of the 
corresponding plane, i.e., S(sj) = S(ej) for j =1, ..., n, a point ai 
supports a patch sj if ai ∈ S(sj). 
 
Step 3.B: Determination of Supported Tiles 
A patch sj is decomposed into equal tiles of edge length G (the grid 
size). For each tile tk of  sj its support support(tk) is defined as the 
number of data points supporting sj  in the cube C(tk), a cube whose 
edge length is G, placed around tk, figure 4. 
 

 
Figure 4: Cube around tile tk (shaded). All edges have length G. 

 
The union set of points meeting these requirements for all tiles tk of a 
patch sj is referred to as the “reduced support” set of sj , Sr(sj) ⊂ S(ej), 
figure 5. In each iteration, a support threshold (T) is computed from 
the statistics of the support(tk) values over all tiles of a patch. Tiles tk 
with support(tk) > T are marked as supported tiles. If a patch does not 
contain supported tiles, it is removed. 
 

 
Figure 5: Single patch with supported tiles and support points. The 
data points (dark shade) show the reduced support set Sr of the patch.  
 
The parameters G and T are computed dynamically each time in the 
trimming step. G is computed as 3 std(d), where std(d) is the standard 
deviation of point patch distances computed for all data points to the 
patches they support. T is computed as mean(c) - 2 std(c), where c is 
the number of points in the reduced support set Sr. It should be noted 

that computing T needs to be done with the current G and not the 
prior. This can be achieved by recounting points in C(tk) before 
computing T. 
 
2.1.2 Patch Split 
A classical case of the EM local optimum problem is illustrated in 
figure 6. 
 

 
A) 

 

 
B) 

Figure 6: Fitting data without and with splitting. A) fitting the 
dataset with one patch (result of classical EM with initial model of 1 

patch). B) after splitting into 4 patches using SMEMPF.  
 
The problem in figure 6A is that only one patch is used, while four 
patches are needed. 6B shows the result using SMEMPF, 
automatically gaining the required number of patches. Splitting is 
processed along axes in the patch having insufficient support of data 
points, figure 7. First the points ai∈Sr(sj) of the reduced support set of 
patch si are projected onto the patch, yielding a point set in a 2D 
coordinate system defined by si. In this 2D system, the points ai are 
projected onto the X-axis under different rotations (0,45,90,135 
degree) to gain density information along the respective directions. 
On the X-axis, they are quantized into bins of size G, the grid size. 
The bin containing the minimum amount of points minp defines 
position and direction of a split axis. If minp falls below a threshold 
minp < 2/3(#Sr(sj)), (# = number of points), a split is caused. The split 
divides Sr(sj) into two sets of points Sr+(sj) and Sr-(sj), left and right of 
the split axis. Two new patches sj

+ and sj
- are created in the plane ej, 

the plane containing sj. Using Sr+(sj) and Sr-(sj), they are trimmed and 
their supporting tiles are determined. sj

+ and sj
- then replace the 

original patch sj in the model. The split procedure is recursive: sj
+ 

and sj
- again are processed the same way, until each resulting patch 

has a sufficiently homogeneous distribution of supporting points and 
is not split further. 

 
Figure 7: Split. Left the original patch, right the split patches. The 

three new patches are slightly replaced compared to their origin, due 
to new patch directions determined by the principal axis of projected 

support points 
 
The number of points in Sr(sj) depends on the grid size G, which 
therefore indirectly steers the splitting process. A smaller G enables 
reaction to more local density differences, and the split resolution is 
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higher (due to smaller bin size). The resulting new patches are 
coplanar with the original patch sj, split determines a new number of 
patches, a number that leads to a better fit to the data due to the 
replacement of the newly created patches in the follow up EMPF 

 a single one, and leave unchanged perceptually dissimilar 
atches. 

 

step. 
2.1.3 Patch Merge 
The iterated EMPF followed by PS only, without merge, could 
possibly grow the number of patches with each iteration to a 
potentially large number. Therefore, merging “similar” patches is 
necessary, figure 8. PM is responsible for the accuracy of the 
statistical model; without it the model may end up fitting the noise. If 
a given patch is properly split, then EMPF will reposition the 
resulting patches to better fit the data points in a way that will turn 
them away from each other. If a patch is unnecessarily split, the 
patches remain very similar after an EMPF iteration, where similar 
means that they will be nearly collinear and close to each other. This 
suggests that merging should combine two perceptually similar 
patches to
p

 
igure 8: Merging of two patches (left) to a single one (right). Th
merged patch results from fitting a single plane to the union of 

F e 

 patches, followed by trimming. 

. Merging of a single 
air sa , sb of patches is processed in two steps, 

 

supporting points of the two original
 
Merging is derived from 2D line merging algorithms based on 
principles of perceptual grouping [19]. Intuitively, the underlying 
similarity measure takes into account the closeness, coplanarity, and 
angle between normals of two patches. The similarity, therefore, is 
based on the model, not on the dataset to be fit
p

Step 1 Similarity determination. 
Step 2 ating a single patch using 

least square fitting and trimming. 
If sufficiently similar, merge by cre

 
Step 1: Similarity Determination  
For similarity determination, the patches have to be sufficiently 
close. This is defined by checking for overlap of bounding cubes of 
each patch, expanded by G (grid size) in each direction. If this 
condition is met, then the patches are tested if they are also 
sufficiently coplanar and parallel. To determine this, the points ai∈ 
Sr(sa) supporting sa are projected onto the plane eb containing  sb and 
vice versa (bj∈ Sr(sb) are projected onto ea). The mean distance of the 
points to their projections is computed for both sets, resulting in two 

alues da, db. If min(da, db) < G the patches will be merged.  

eratively until 
ll possible pairs of patches are sufficiently dissimilar. 

ported and unsupported tiles.  
directly, by determining tile support, it steers the split process; and 

ep in the 

until
• 

e closest points in the support set, the 
andard deviation of the 

(unreduced) support set. 

 number of patches, G decreases until it 
alances itself to an appropriate value due to the increasing force of 

ints are seen as outliers and are dropped.  
o determine the performance of the SMEMPF method, an 

v
 
Step 2: Merge  
A new plane is fit to the set union Sr(sa) ∪Sr(sb) with a classical 
regression and trimmed to a patch. Merging is done it
a
 

2.1.4 Determination and Influence of the Grid Size 
Parameter (G) 
A central parameter in the SMEMPF method is the grid size G. Apart 
from its visible manifestation as the edge length of each tile of a 
patch, it controls different instances in the process such as, the tiling 
size and the distinction between sup
In
it determines candidates for merging. 
  
G is newly determined in each iteration of the EMPF process, based 
on the distribution of the distances of data points to patches/tiles they 
support. It is computed as 3std(d), where std(d) is the standard 
deviation of point patch distances computed for all data points to the 
patches they support. G can be seen as quality of approximation of 
the patches to the data; a lower value shows a better approximation. 
This measure of quality is only a valid measure if the number of 
patches is fixed. Increasing the number of patches, e.g. to a value 
such that each patch is exactly supported by three data points, yields 
G=0, but simply measures overfit to noise instead of data. 
Experimental results show that the interplay between split and merge 
leads to a decreasing value of G in each iteration st
beginning of the SMEMPF process (when starting with a high value) 

 it balances itself. The decrease is due to two reasons, 
The re-computation of G is made using the reduced support set. 
Since this is a subset of th
standard deviation is smaller than the st

• But primarily, split leads to a better fit. 
 
In contrast, the merge process increases the standard deviation due to 
a less optimal fit. Hence, as long as, intuitively, there's a stronger rate 
of split than merge, as it naturally is in the first iteration steps if the 
process is started with a low
b
merge during the iteration. 
 
2.1.5 Experimental Results 
The final result of the SMEMPF method consists of coplanar point 
sets, orthogonal projection to project the reduced support sets Sr(sj) 
onto their supported patches sj was used. The results, therefore, can 
be seen as a segmentation of the original point set into sets of 
replaced (projected) data points, related by their support to the same 
patch. Non-assigned data po
T
experiment was conducted. 
 
The experiment generates 25 sets N1..25 of ~7000 points each by 
randomly sampling a 3D model of four walls with a different amount 
of Gaussian relocation (replacement noise), figure 9. The standard 
deviation of point distances to the ground truth walls is 1-25 for N1 to 
N25 respective, i.e. std(Ni )=i . Therefore, the representation of the 
walls by the point clouds is more blurred in higher indexed data sets, 
figures 9 C,D,E for examples of  N2, N15, N23. The length of the short 
edges of the walls forming the small corner (front left in figure 7A) is 
150 units; therefore, the structure of this corner gets lost in the point 
cloud representation with high standard deviation (15-25 units, point 
sets N15 to N25). For each set Ni=1..25 the SMEMPF is processed, 
initialized with a set of three patches, figure 9B. Similar to the 
evaluation used in [10], the result is analyzed by summing the 
angular distances of all patch normals to their corresponding ground 
truth, giving the quality of approximation. Figure 9F shows a graph 
of the resulting differences for the 25 sets. It can be seen that the 
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approximation is constantly good even up to a high noise level 
(std=15, see figure 9 D,F). The value of a difference of ~4 degrees 
shows an average difference of 1 degree for each patch. The jump in 

alues for N22 to N23 results from wrong fitting: the high amount of 
noise destroyed the corner feature, figure 9 E, F. 
 

A

v

As the robot performs range scanning to obtain an environment map 
using the SMEMPF planar approximation method, the acquired 
datasets are employed in the subsequent two modules for simulation 
and visualization purposes.  
 

C

 
B  

F

D  E  

Figure 9: Fitting to a ground truth dataset. A) the original model (4 walls)  B) set (no noise) of simulated scan points created from A) and initial 
3 patches. The figures C-E show the result of the SMEMPF algorithm (each after 6 iterations), using the initial patch configuration shown in B) 
but with random replacement of scan points. C) replacement with standard deviation of 2, D) std = 15, E) std= 23. The length of the short walls 
being misrepresented in E) is 150; the representation fails due to the high amount of noise, and the original structure is not visible in the point 

ngular error, x-axis: standard set. F) Sum of angular errors of patch normals. Y-axis: a deviation of replaced data points. The values at x=2, 15, 
23 correspond to C), D) E) .

sors update the 
oundary conditions of the CFD simulation module. 

warded to the AR visualization module 
r immersive visualization. 

 
Figure 10: CFD simulation module: room modeling and boundary 

conditions. 

 
2.2 CFD Simulation Module 
CFD simulation module is used to predict 3D indoor thermal 
behavior for use by AR visualization. CFD simulation for indoor 
environments involves two major steps, modeling the room geometry 
and setting initial / boundary conditions, figure 10. The room 
geometry is modeled using robot mapping. The SMEMPF method 
employed allows for identifying patches with precision. These 
patches are then utilized to develop a computational model that 
represents the room geometry. The boundary conditions for CFD 
simulation are applied based on real-time wireless sensors that track 
temperature and velocity changes within the room. These changes 
occur as users interact with the actual space or as the space condition 
changes due to environmental fluctuations within the room. As the 
indoor thermal environment changes, the wireless sen
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The space is, then, discretized into uniform grids. The simulation 
progresses based on the convergence criteria. CFD simulation utilizes 
Fluent 6.02 and Gambit 2.0.6 [20]. Once the simulation converges, 
the resultant datasets are for
fo
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2.3 AR Visualization Module 
The AR visualization module tracks the user’s movement in real time 
and poses graphical representations of CFD simulation datasets on 
the HMD for the user to visualize and interact with. This module 
consists of two sub-components, the multimodal HCI and AR 
pipeline. The multimodal HCI enables efficient data manipulation by 
users while still being immersed in the visualization of CFD datasets, 
in actual space. It consists of a library of speech and gesture 
recognition tasks that aid in data manipulation. IBM Viavoice [21] 
was employed for speech recognition. For gesture recognition, 
CyberGlove [22] was used. It captured global hand motion using 
trackers attached to the glove and local fingers’ motion as a set of 

int angles. Using custom-prepared functions, the hand posture data 

 
inherent to AR such as registration etals present in the 
room and latency, Gaussian and Kalman filters were employed [24]. 

 

jo
was transformed into commands that allowed data manipulation.  
 
The AR sub-component consists of tracking of user’s head motion, 
generating new perspective graphical representations of resultant 
CFD datasets based on tracker data, and posing this information to 
the HMD in real time, figure 11. Flock of Birds [23] magnetic 
trackers were used to track user movement. To alleviate the issues

 errors due to m
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3.0 CONCLUSIONS 
The paper discussed a framework for integrated AR architecture for 
indoor thermal performance data visualization using mobile robot for 
environment mapping. It presented a Split and Merge Expectation-
Maximization Patch Fitting planar approximation method to achieve 
robust visualization. The SMEMPF, used as a mapping procedure in 
robotics as a combination of Expectation Maximization patch fitting 
with alternating patch splitting and merging, was proven to be a 
powerful tool to gain a patch representation of maps formerly 
consisting of independent laser range scanner reflection points. The 
newly introduced merging step balances the number of patches, 
created by s
th
imprecise. 
 
Although the present study demonstrates the potential for such 
integration, issues related to automatic transitions between the spatial 
data generated by the robots and the simulation engine need 
further explored. Metho
simulation, and augmente
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