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Abstract 
The problem of collision detection of functionally defined objects 
based on perturbation functions for constant time is considered. 
The collision detection algorithm of different complexity during a 
constant time is discussed. Recursive object space subdivision 
algorithm is proposed. In the perturbation function representation, 
collision detection becomes trivial due to the inside/outside 
property of the functionally defined surface.  
Keywords: Collision Detection, Perturbation Functions, 
Recursive Object Space Subdivision. 

1. INTRODUCTION 
The geometric concept of virtual environment modeling using F-
rep can be described as an algebraic system [1] 

(Μ, Φ, W),                                                       (1) 
where Μ is the set of geometric objects, Φ is the set of geometric 
operations, and W is the set of relations on the set of objects. 
Geometric objects are considered as closed subsets of n-
dimensional Euclidean space En with the definition: 

ƒ(x1,x2,…,xn) ≥ 0,                                            (2) 
where ƒ is a real continuous function defined on En. In work [1] 
authors call ƒ a defining function. The inequality (2) is called a 
function representation (or F-rep) of a geometric object.  

An example of the relations is collision detection for objects. The 
binary relation is a set of the set Μ²=Μ×Μ. It may be defined as 

S¡: Μ×Μ →І                                                   (3) 
Collision detection is a complicated problem solved in various 
computer programs [2]. This means that for each animation 
frame, one should test whether any two or more objects collided 
(see Figure 1).  

 
Figure 1: Collision detection of functionally defined objects          
based on perturbation functions. 

      

Particularly in calculating motions of many objects that move 
under changing constraints and frequently make collisions, one of 
the key issues of dynamic simulation methods is calculation of 
collision impulse between rigid bodies [4]. A fast algorithm for 
calculating contact force with friction by formulating the relation 
between force and relative acceleration as a linear 
complementary problem was equally demonstrated and this 
model was based on solving the linear complementary problem 
[5]. Baraff’s algorithm has achieved great performance for real-
time and interactive simulation of two-dimensional mechanisms 
with contact force, friction force and collision impulse, although 
friction impulse at collision was not completely covered in such a 
model. In geometric haptic rendering models, collision detection 
is not trivial to compute. One of the most popular collision 
detection algorithms in geometric haptic rendering is H-Collide 
[6]. It uses a hybrid hierarchy of spatial subdivision and OBB 
trees. The simplest algorithms for collision detection are based 
upon using bounding volumes and spatial decomposition 
techniques. Examples of bounding volumes include bounding 

. 
The ideal case is collision detection of any complexity between 
two arbitrary objects in the minimal time. Since the control of 
collisions between all pairs of objects is a resource-consuming 
process, such tests are usually done only for part of objects. The 
detection algorithm can be simplified prior to testing the presence 
of the given point (belonging to one of the objects), e.g., inside 
the cube confining the second object. The problem of simulating 
the behavior of interacting bodies having irregular shape arises in 
some applications such as dynamics of body collisions and 
celestial mechanics, molecular dynamics, graphics simulations 
for the problem of nano-assembly automation and its application 
in medicine using collective robotics [3], computer games and 
haptic interactions.  

 
Figure 2: Collision of two objects: the worst case. 
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spheres, bounding boxes, convex polyhedrons. Examples of 
bounding boxes include axis-aligned bounding boxes and 
oriented bounding boxes. In work [7] authors used a bounding 
sphere hierarchy to detect collisions. However such approaches 
cannot define collision of objects represented on figure 2. Spatial 
decomposition techniques based on subdivision are used to solve 
the interference problem. Recursive subdivision is robust but 
computationally expensive. In particular, Hahn [8] used a 
subdivision based collision detection algorithm. 
For curved objects, Herzen and etc. [9] have described an 
algorithm based on subdivision technique. A similar method 
using interval arithmetic and subdivision has been presented for 
collision detection by Duff [10]. However, for commonly used 
spline patches computing and representing the implicit 
representations is computationally expensive [11]. In [12], 
Pentland and Williams used implicit functions to represent shape 
and the property of the “inside-outside” functions for collision 
detection. But this algorithm has a drawback in terms of 
robustness, as it uses point samples. Thus, the most popular 
collision detection algorithms are extremal distance and extremal 
points (Barraf: four nonlinear equations solving), testing sample 
points (Pentland, Gascuel: accuracy of sampling using huge 
memory), interval methods (Duff, Snyder: interval bounds on the 
output of functions with time-consuming).  The detailed 
explanation of main problems is described in [10]. The main 
problems are procedurally defined functions, time-dependent 
surfaces and surfaces of high complexity. Surgery simulation and 
entertainment technology require fast deformable models and 
efficient collision handling techniques. Efficient collision 
detection algorithms are accelerated by spatial data structures, 
bounding volume hierarchies, distance fields, etc. Such data 
structures are commonly built in a pre-processing stage. But pre-
processed data structures are less efficient for deforming objects. 
Collision detection for deformable objects introduces additional 
challenging problems [13].  
As a result of work of the known algorithm of collision detection 
of functionally defined object [14], the collision is not always 
detected and, moreover, detection of different collisions requires 
a greatly different time.  
The goal of this paper is to prove that using the proposed 
algorithm the object collision is detected in a constant and less 
time for collisions of different complexity, and the detection of 
events is absolutely ensured. 

2. PREVIOUS WORK 

A functionally defined object is completely defined by means of 
the real-valued describing function of three variables (x1, x2, x3) 
in the form of F(X) ≥ 0, then the objects are treated as closed 
subsets of the Euclidean space En, defined by the describing 
function F(X) ≥ 0, where F is the continuous real-valued function 
and X= (x1, x2, x3) is the point in En, defined by the coordinate 
variables. Here F(X) > 0 defines points inside the object, F(X) = 0 
defines points on the boundary, and F(X) < 0 defines points that 
lie outside and do not belong to the object. Hence, applying the 
Boolean intersection operation and calculating the first point 
belonging to the intersection, one will easily detect whether the 
objects collided or not.  
The collision detection algorithm described in [14] is based on the 
relation of object intersection and uses the Sobol’s quasirandom 
sequences and the spiral quadratic search for detecting 
nonnegative values of the function defining the intersection. In so 

doing, body, confining spheres are used to define the region of 
search.  
We will consider the known algorithm of collision detection 
between functionally defined objects [14]. Let the objects G1 and 
G2 be defined as ƒ1(X) ≥ 0 and ƒ2(X) ≥ 0. The intersection 
(interference, collision) relation is defined by the bivalued 
predicate:  
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G1:ƒ1(X) ≥ 01   

G2:ƒ2(X) ≥ 0. Is intersection empty? 

A function ƒ3(X)= ƒ1(X)&ƒ2(X) defining the result of the 
intersection can be used to evaluate Sc (3). It can be stated that 
Sc=0 if ƒ3(X)<0 for any point of the space Eⁿ. In so going, spheres 
confining the bodies are used to define the region of search. The 
main disadvantage of this algorithm is that the time of 
functionally defined object collision detection depends greatly on 
the relative position of collided objects and parts of their surfaces. 
This algorithm not always can detect collisions of objects. We 
will consider the algorithm in more detail. 
1. Define the admissible domain D for two given objects. 

Admissible domain D: 
1) bounding boxes are projected onto three coordinate planes; 
2) projections of intersections are detected in each plane; 
3) rectangular domain is detected in the space. 
2. Find the argument p*, where ƒ(p*)=max(ƒ(p)) in D (if ƒ(p*)<0, 
then collision is not detected, and if ƒ(p*)≥0, then p* returns the 
collision point coordinates). 
Search for an external point: 
1) quasirandom LPτ points (Sobol’s sequences are generated): 
• the points are placed randomly in the nodes of a rectangular 

grid. 
• N points guarantee N-1/3 accuracy of point detection; 
2) start of search by a quadratic spiral from the random point: 
• succeeds in one-dimensional quadratic searches, 
• a quadratic interpolant by three uniformly space points; 
• it is required that the function ƒ(p) is of C1continuity; 
3) stop trials in the following cases: 
• zero or a positive value of the function ƒ(p) is found, 
• the assigned number N of trials is exceeded, 
• argument p* is found with the given accuracy. 

Example 
Deformable noisy spheres 
f(x,y,z,t)=R²-x²-y²-z²+noise(x,y,z), 
where x=x(t), y=y(t), z=z(t), and noise is the so-called solid 
noise function (Gardner’s series). 
The worst case is when the objects have no collision point: 

1.07 seconds for 1000 random points. 
The event of collision: 0.07 seconds for 106 trials. 
 

We should note that the time tests were done on a parallel 
multiprocessor computer system (OCCAM-2) based on transputers 
T805. 
This algorithm does not always result in collision detection, i.e., the 
algorithm does not ensure detection of event as stated by authors 
[14]. Moreover, a drastically different time is required for different 
collisions.  



3. COLLISION DETECTION FOR FUNCTIONALLY 
DEFINED OBJECTS BASED ON RECURSIVE 
OBJECT SPACE SUBDIVISION 

We propose another way of collision detection without using any 
bounding volumes around each object and pre-processing stage. 
This way of collision detection is based on the relation of object 
intersections, function representation with perturbation functions 
[15-17] and on the recursive object space subdivision [18, 19] for 
search the contact point of the objects. 

3.1 Set of geometric objects 
It is proposed to describe complex geometric objects by defining 
the function of deviation (perturbation function of the second 
order) from the basic triangles [17], planes and quadrics [15-17]. 
So, we proposed to describe geometric objects by defining the 
perturbation function from the basic quadric in the form: 
F(x,y,z) = A11x2 + A22y2 + A33z2 + A12xy +A13 xz + A23yz 
+ A14x + A24y + A34z + A44 ≥ 0                                           (5) 
In particular, the freeform is a composition of the basic quadric 
and the perturbation F’(x,y,z) = F(x,y,z) + R(x,y,z), where the 
perturbation function R(x,y,z) is found as follows: 

R(x,y,z,)=Q2(x,y,z) if Q(x,y,z)>0                                     (6) 
0 otherwise, 

where Q is the perturbing quadric. A perturbed quadric (freeform) 
can be also considered as Q. In other words, the composition of 
the basic quadric and the deviation function is a new perturbation 
function, i.e., a derivative for another basic quadric. Since max[Q 
+ R] ≤max[Q] + max[R], this means that to estimate the 
maximum Q on some interval, we must calculate the maximum 
perturbation function on the same interval. The surface obtained 
will be smooth (see Figure 3), and a small number of perturbation 
functions will be necessary to create complex surface forms.  

 
Figure 3: Functionally defined objects based on perturbation 

functions. 

3.2 Set-theoretic operations 
Let the objects G1 and G2 be defined as ƒ1(X) ≥ 0 and ƒ2(X) ≥ 0. 
The binary operation of the objects G1 and G2 means operation 
G3=Φ¡(G1,G2) with the definition  

ƒ3=ψ(ƒ1(X),ƒ2(X)) ≥ 0,                                                       (7) 
where ψ  is the continuous real function of two variables.  

The geometric model should allow designing of objects and their 
compositions of infinite complexity. This is primarily achieved by 
means of Boolean operations of uniting A∪B or (A+B) and 
intersection A∩B or (AB) (see Figure 4).  

 
 Figure 4: Set-theoretic operations on objects: (a) union, and (b) 

intersection.  
The whole scene is a kind of a tree. Each node of the tree is an 
object constructor performing logical operations its descendants, 
and vertices of the tree are primitives. When the object 
constructor is queried while rendering, the object addresses its 
descendants, transforms the obtained results, and gives the answer 
to the query. The descendant may be a primitive or another object 
constructor. While applying the geometric operations, rotations, 
displacements, and scaling to the object constructor it performs all 
these operations on its descendants, and in addition changes its 
Boolean function in the case of inversion. 

3.3 Recursive object space subdivision based 
collision detection algorithm 
After calculation of the intersection, i.e., application of the 
Boolean operation of intersection, the search for the contact point 
of collided objects is done by means of recursive subdivision of 
the object (model) space. Hence, it is sufficient to find at least one 
point (or more) belonging to intersection.  

 
Figure 5: The model coordinate system (M) in which the space 

inside the cube is subdivided. 

We consider the object-intersection A∩B (A = F3(x,y,z) + 
R3(x,y,z); B = F2(x,y,z) + R2 (x,y,z)) (see Figure 4 (b)) that has the 
property of answering the request on intersection with a 
rectangular parallelepiped or a bar. The negative answer 
guarantees that the object-intersection is not intersected and has 
no common points belonging to the intersection is done by 
recursive subdivision of the space inside the cube defined by 
boundaries of ±1 along each coordinate (see Figure5). 



The center of the cube matches the origin of the model coordinate 
system M whereas the plane Z= −1 coincides with the screen 
plane. At the first step of recursion, the initial cube is subdivided 
into four smaller subcube in the screen plane. At the stage of 
subdivision of space along the quaternary tree, 2-times 
compression and transfer by ±1 along two coordinates are 
performed. Assume, that domain of point search is a cube in 
which embed our object-intersection. 
Then recursive subdivision of the domain applied: domain cuts by 
2 planes, that perpendicular to the screen plane XY, into 4 bars. 
For each bar intersection test are executed. If the object intersects 
with given bar, then bar subdivides further. Otherwise, we 
exclude bar from subdivision. This corresponds with exclusion of 
the square areas in the screen, on which given bar (and therefore, 
object- intersection) are projected (see Figure 6). Intersection test 
for base quadric is performed as follows.  

 
Figure 6: The screen coordinate system (P) and quaternary 

subdivision. 
If in the equation of quadric Q(x, y, z) = 0 (4) the values of the 
variables x, y, z vary within the length [-1, 1], then 

max[ |Q(x, y, z) – A44| ] ≤ maxF = 

|A11|+|A22|+|A33|+|A12|+|A13|+|A23|+|A14|+|A24|+|A34|       (8) 

We should note that if |A44| ≤ max[ |Q(x, y, z) – A44| ] ≤ maxF, 
then, probably, a point M0 = (x0, y0, z0) ( -1 < x0, y0, z0 < 1 ) 
exists such that Q(x0, y0, z0) = 0. If maxF < |A44|, then such 
points do not knowingly exist, and the sign of the coefficient A44 
distinguishes location of the bar inside or outside with respect to 
the quadric surface Q=0 (if A44 ≥ 0, then the subbar is inside the 
quadric). Using results of this test, we perform subdivision of 
subbars that fall within the quadric completely or, probably, 
partially, and the knowingly external subbars are eliminated from 
processing. A test for intersection of subbars with freeforms is 
somewhat different. For the basic quadric the test for intersection 
looks as follows: 

if ( ( A44+R ) < 0 ) && ( 
|A11|+|A22|+|A33|+|A12|+|A13|+|A23|+|A14|+|A24|+|A34| < -

(A44+R ) ) then the subbar is outside.                                       (9) 
 
Here R is the maximum perturbation function on the current 
interval; Aij - are the coefficients of quadratic function. The 
following test is performed for the perturbation function: 

 

if ( |A11|+|A22|+|A33|+|A12|+|A13|+|A23|+|A14|+|A24|+|A34| < 
|A44| ) then the subbar is outside of the range of definition of 

perturbation,                                                                             (10) 
 where Aij - are the coefficients of the quadratic perturbation 
function, and a value of R is additionally calculated and added to 
the basic function.  

 
Figure 7: The binary subdivision. 

On some recursion level we obtain the bars with one pixel-wide 
footprint (slices). If for “a” steps crossing is not found, search 
stops, where 2ªx2ª is the screen resolution. If crossing is found, 
then we start subdivision of slices in depth, i.e. along Z-axis (see 
Figure 7).  
 

 
Figure 8: Collision of objects, collision is detected. 

Therefore, for each slice we determine first point, which contains 
object-intersection (the test for crossing is similar above 
described, but accordingly, with smaller number of coefficients). 
In other words, we traverse scene space (unit cube) by quad-tree, 
leafs of which (slices) is a roots of the binary subtrees. Coordinate 
system in which the algorithm subdivides cubic volume is called 
work or model space and is denoted M (see Figure 5). Coordinate 
system with camera (viewer) in its origin and viewing frustum is 
denoted P (see Figure 6). 



To calculate the time of collision detection, we tested objects 
having different complexity (shape) and different form of 
collision (we mean collisions by different sides and parts of 
objects) (see Figure 8). The collision calculation time was real on 
PC (Intel Pentium 4 Processor, 2800 MHz), and the time spread 
during testing was below 1% of the given time. 
Thus, for the functional object definition using the perturbation 
functions [15-17] the test for intersection is similar to the test 
described in [18, 19] for rendering. Next we prove this statement. 
3.3.1 Test for zeros of analytical function in the δ-
vicinity of the origin of coordinates 
In the rendering algorithms by recursive subdivision of an 
arbitrary-dimension space, the most important question is about 
intersection of an object defined as ƒ(x,y,z) ≥ 0, with a subdivision 
cell (a square, a bar neighborhood B(P, δ)={Xi: |Xi-P|≤δ}). 
It is clear that the exact solution of this problem (the system of 
inequalities) is possible only for rather simple functions ƒ(x,y,z). 
Even for a function expandable into polynomials in B(P, δ) to the 
nth degree the exact solution is unsuitable because it will involve 
roots to the nth degree. 
However, we do not need the exact solution for our application. It 
is necessary and sufficient to answer the question whether there 
are contour points in the vicinity because the complete 
overlapping or the absence of object intersection by a cell, are 
solved by simple inequalities. It is noteworthy that the 
approximate solution should take into account the case of 
potential intersection and be asymptotically accurate. 
Thus, we will give another formulation of the problem as a 
definition of the set of points belonging to B(0, δ)  and at the same 
time satisfying the equation ƒ(x,y,z) = 0. 

Definition.  The set of points B(P, δ) = {X: dist(X,P) ≤ δ} is 
called a δ-area of the point P in the metric space. Further 
considerations are concerned with the case of three-dimensional 
space because this is precisely the case of our interest, and the 
Manhattan metric dist(X,Y) = max{|X|,|Y|}, although these results 
are valid also for an arbitrary dimension and metric.  

Finding the solution. Let ƒ(x,y,z) be an analytical function in a 
three-dimensional space. Then in B((0,0,0), δ)  it can be expanded 
into the Taylor’s series. Discarding terms with power higher than 
some d, yields 
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Write expression (10) in the form 
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Here we assume that the following condition is fulfilled: 

( )f 0 0 0 0, , >  ,                                                                   (14) 

because otherwise the contour involves the origin of coordinates, 
i.e., the trivial case. 

Let us consider the inequality of triangle: 
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and the function ƒi (x,y,z): 
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( ) ( )( ) {ε = =dist x y z x y z, , ; , , max , ,0 0 0 }             (17) 

Thus, writing the test in the practically suitable form we have the 
following inequality (if it is true, then ƒ(x,y,z) has zeros in 
B((0,0,0), δ): 
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Since the vicinity is usually a unit vicinity, B((0,0,0), δ=1), the 
formula is reduced to comparison of the modules of the free term 
of the equation of the figure (a line or a surface) with the sum of 
modules of the rest of coefficients. 

4. CONCLUSION 
The problem of collision detection or contact determination 
between two or more objects is fundamental to computer 
animation, computer simulated environments, robot motion 
planning, physical based modeling and molecular modeling as 
well. 
In the proposed paper, we have analyzed the algorithm for 
detection of collisions of objects defined by analytical 
perturbation functions by means of recursive object space 
subdivision. We have shown the advantages of the algorithm over 
the known functionally defined object collision detection 
algorithm. 
We may conclude that in the proposed functionally defined object 
collision detection algorithm, the collision is always detected and 
does not depend on the relative position of collided objects and 
parts of their surfaces, i.e., such an algorithm guarantees detection 
of the event, which has been proved both experimentally and 
theoretically; it is required to have equal number of levels of 
object space subdivision and, therefore, equal computation time; 
the time of computation by means of the proposed collision 
detection algorithm was real on PC ( Intel Pentium 4 Processor, 
2800 MHz); the object collision was detected in a constant time 
for collisions of different complexity and the time spread in the 
tests was below 1% of the given time; in the offered collision 
detection algorithm we didn’t use any bounding volumes around 
each object. 
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