
Intelligent visibility-based 3D scene processing techniques for
computer games

Dimitri PLEMENOS1, Jérôme GRASSET2, Benoît JAUBERT1, Karim TAMINE1

1University of Limoges, MSI laboratory, 83, rue d’Isle, 87000 Limoges (France)
2Institut d’Ingénerie Informatique de Limoges, Rue Sante-Anne, Limoges (France)

plemenos@unilim.fr, grasset@3il.fr, jaubert@msi.unilim.fr, tamine@msi.unilim.fr

Abstract

In this paper we present intelligent visibility-based
techniques allowing efficient processing of 3D scenes in order
to be used in real time in computer games. The presented
techniques allow real time use of 3D scenes either by
simplifying the scene models (by suppressing useless details
or by using improved image-based modelling) or by off-line
automatic camera path pre-computation allowing fast
exploration of the game environment.

Keywords: Visual scene complexity, Good point of
view, Virtual world exploration, Image-based modelling,
Object simplification.

1. INTRODUCTION

In computer games, there are two important parameters to be
taken into account. The first one is real time motion and
changes of the game environment. This requirement may be
obtained both by intelligent simplification of the game
environment as well as by preprocessing techniques applied
to path computing for the camera or for virtual actors of the
game. The second parameter is realism in representation of
the game environment and its virtual actors. This requirement
needs also simplification and preprocessing techniques to be
reached.

It is easy to understand that these two important requirements,
real time motion and realistic rendering, are contradictory to
each other. More the motion is fast and fluid, more the
program may use additional time to improve the realism of the
game. More time is required for motion, less time is available
for realistic rendering.

In this paper we are mainly concerned by real time motion,
whereas intelligent techniques are studied to improve image-
based modelling in order to obtain more realistic rendering.
Three kinds of techniques will be studied, where artificial
intelligence-based methods are used to improve results:
Intelligent object simplification; intelligent viewpoint
computing for image-based scene modelling; off-line pre-
computing of a path for a virtual camera exploring the game
environment.

In section 2 we will present an aggressive simplification
method for moving objects of the game environment, based
on suppression of potentially non visible polygons. Section
3 will be concerned by techniques for computing a minimal
set of camera positions, in order to improve image-based

modelling and rendering while in section 4 preprocessing
techniques will be proposed for computing paths for a virtual
camera exploring the game environment. In section 5 we will
temporary conclude and will present possible future work.

2. OBJECT SIMPLIFICATION

One of the means for reducing computation time during a
game, in order to obtain fluid motion, is object
simplification. In a game, there are several parts of its
environment which are not always visible or they are visible
from very far. In such cases, it is important to simplify the
models of these parts, in order to accelerate the game display.

One of the well known simplification techniques is the level
of details (LOD) technique. A scene, or part of scene, is
modelled in various levels of details. For parts of the scene
that cannot be well seen, a low level of detail may be chosen,
whereas for the well visible parts a high level must be used for
display.

In this section we will present another kind of scene
simplification which could be used in computer games. This
technique is based on rough determination of potentially non
visible parts of the scene and suppression of these parts. It is
an aggressive technique because potentially non visible parts
of moving objects of a scene are roughly determined and some
of them may be visible in some cases. This scene
simplification technique is presented below.

2.1 Visibility culling

Visibility culling is the generic term for the various
techniques aiming at removing the invisible polygons from
the list of polygons sent to the display module. It includes
view frustum culling, back face culling and occlusion culling.

The existing approaches are dedicated to static scenes. During
a pre-processing stage the visibility from “cells” (delimited
3D areas of the scene) is evaluated to get a collection of
Potentially Visible Sets (PVS) of polygons. Then, when the
camera travels in the scene only the polygons of the PVS
associated with the cell where the camera is are displayed.

Current researches focus on several problems, among which:
• how to build an accurate PVS, containing all the

potentially visible polygons and only them? The exact
methods ([Dur02] and [Nir02]) need lots of computations
and memory and moreover are difficult to implement in a
robust way. The practical solutions are usually

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

“conservative”: all the visible polygons are included in
the PVS, but some invisible are too. As a consequence
many researches deal with the possibilities to reduce this
number of invisible polygons.

• how to store the visibility data and swap quickly from a
PVS to another?

In computer games, visibility culling is used too (see [Tell91]
or [Lue95]). For this kind of application the above two
problems are critical and may need specifically adapted
solutions from general visibility culling algorithms.

Interested readers may refer to [Coh03] for quite an exhaustive
survey of occlusion culling techniques and to [Dur00] for a
more general survey of visibility problems.

2.2 Visibility culling for moving objects

Existing methods focus on very large but also “very static”
scenes. With current approaches, moving objects in static
scenes are never simplified, although it is very important for
computer games. The purpose of the method presented here is
simplification of moving objects.

The method is based on the bounding box of the object to be
simplified (see [Gra02] and [Gra05] for first results). It uses a
straightforward observation: when we look at an object only
the polygons visible through the visible faces of its
bounding box can be seen. Thus, if the polygons visible
through each face of a bounding box were precomputed the
object could be easily simplified “on the fly”.

The main goals of the method are:
• give an easy way to compute visibility,
• define an efficient implementation scheme to change the

PVS very quickly in order to be applicable to moving
objects in real time animations without any freezing,

• optimise the memory cost of the visibility data.

These three goals have the same objective: the method must
be practical for real time 3D animation such as in computer
games. It is important to note that visibility is not computed
for the whole scene but for each moving object
independently.

The proposed visibility culling is working as follows:

• Each of the 6 “primary cells” is defined as the half space
that is delimited by the plane supporting a face and that
does not contain the bounding box. These cells are
unusual because they overlap.

• The visibility is computed for any viewpoint of the half
space but only through the face of the box defining its
border. Here we use the hardware Zbuffer, considering
sampling viewpoints on a half ellipsoïd surrounding this
face. Each polygon is given a color, and the visibility is
computed by reading the colors of each rendered image.
For more details on visibility calculation see also
section 3.

• The visibility data are coded as a sort of the polygons of

the object. 64 sets of polygons are defined, binary
numbered from 000000b to 111111b. A polygon is
placed in a set according to the faces of the bounding box
it is visible through, each digit corresponding to a face.
0b denotes the polygon is invisible through the face, 1b
denotes it is visible.
With this data structure each polygon belongs to one and
only one set. It has been implemented with OpenGL
display lists: the structure cost is nearly null, it is only
the use of 64 display lists.

To perform visibilty culling before the rendering of each
frame the visible from the current viewpoint faces of the
bounding box of each object are determined and only the
corresponding display lists are used.

The above method is an “aggressive” one because two kinds
of sampling are used:
• sampling of viewpoints space because only some points

of an infinite space are considered,
• sampling of the rendered view used for preprocessing the

visibility, due to the finite resolution of the pixel buffer.
For this reason some visible polygons may be missing. In
fact, with reasonable sampling rates (about 40 views for each
faces and a 1280x1024 resolution) no error is noticed on
ordinary 3D objects.

The behaviour of this visibility culling method for moving
objects is generally interesting:
• The method is very fast. The preprocessing stage is easy

and, thanks to the data structure, there is no freezing at
all in the animation when the list of displayed polygons
has to change. There is no need of extra time to compute
which faces of the bouding box are visible (6 dot
products) neither to build the corresponding list of
polygons (64 logical “and” operations). So the
acceleration ratio is entirely the simplification ratio.
This is a very interesting feature. The precomputation
time is less than 1 minute for objects of up to 100000
triangles, with a common PC computer.

• The memory cost is negligible: 64 definitions of display
list instead of a raw list of polygons, this has no impact
on memory. But there may be some drawbacks that
should be studied. First of all the approach needs 64
display lists for each object: if there are lots of objects
there may be too many display lists for the graphic card
abitility. More specifically, display lists are often used
to group polygons having the same textures to improve
display performance, so if these polygons have to be
sorted according to their visibility also it may give quite
an intricate data structure.

• The simplification ratio is sometimes not satisfactory.
When the list of polygons to be displayed is computed
all the polygons visible through at least one of the
sampling viewpoint of one on the visible bounding box
face are used. Let’s suppose that 3 faces of the bounding
box are visible, the observer standing on the line
supporting a diagonal of the box. In such a case the
method displays polygons that may be visible from an
nearly opposite viewpoint, just because they are seen
through a face that is visible in both cases.

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Figure 1: Simplification of a “Condenser”
In front view 32.6% of the polygons are culled.

In diagonal view 21.1% are culled

Figure 2: Simplification of a “Tea Fountain”
In front view 65.1% of the polygons are culled.

In diagonal view 39% are culled

Figure 3: Simplification of a “Tree”
In front view 37.4% of the polygons are culled.

In diagonal view 15.2% are culled

Figure 4: S impl i f icat ion of a “Rose”
In front view 26% of the polygons are culled.

In diagonal view 11.1% are culled

Figures 1, 2, 3 and 4 show some results of the simplification

method, where“front view” is a view from a typical viewpoint
showing only one face of the bounding box, and “diagonal
view” is the worst case of 3 faces of the bounding box being
visible. In these figures diagonal views show the remaining
part of the scene after visibility culling for the front views.

3. INTELLIGENT IMAGE-BASED SCENE
MODELLING

The purpose of image-based modelling is to replace a scene by
a set of images. Display of these images, together with other
ones, obtained by interpolation, replaces the classical time
consuming visibility determination and hidden surface
removal process. How many images are needed to well
represent a scene? Searching and loading images may become
a time consuming process if too many images are used to
model and render the scene. To avoid this problem it would be
interesting to compute a minimal set of camera positions
allowing to compute a high quality initial set of images for
modelling and rendering. It is obvious that a uniform
discretisation of the viewpoints space is not a satisfactory
solution because the the choice of points of view does not
depend on the visual complexity. With uniform
discretisation, the discretisation step must be very short in
order to be sure that no visible parts of the game environment
are lost. Such a method produces too many images , what is
prejudicial to the game reactivity. The only reasonable
solution is a visual complexity-based selection of camera
positions.

Computation of a minimal set of camera positions is not an
easy work because, in this computation, we have to choose
positions allowing to see as many new details of the scene as
possible. In this section we present a method of minimal
camera position set computing, based on the notion of visual
complexity. The notion of visual (or viewpoint) complexity
has received a formal definition in [PSF04] but it was
implicitly used since several years in many papers [And04,
BDP00a, BDP00b, BDP99, Col88, Feixas02, Feixas99,
KK88, PB96, Ple03, PPV01, PPV02, PPV03, PPV03b,
PPV03c, PPV03d, PPV03e, Rigau00, Rigau02a, Rigau02b,
Sbert02]. Some satisfactory methods to face this problem
were proposed, especially in [PPV03d] and [PSF04]. All these
methods only take into account geometry of the scene. Of
course, other aspects, like lighting, texturing etc., may be
important to well understand a game or a scene but geometry
is the most important aspect.

We are convinced that light source placement is also an
important aspect and we are working to this goal but the
methods available today are not satisfactory. Some of the
existing methods are based on inverse lighting techniques,
where light source positions are determined from the expected
lighting result. Among these methods we can mention
[PF92], [PRJ97] and [JPP02]. None of these methods is
entirely satisfactory, especially because it is not easy to well
describe and formalise the expected lighting results. Design
Galleries [MAB97] is a general system to compute parameters
for computer graphics but computation is not fully automatic.
Another not fully automatic system to compute light source
positions is presented in [HM03]. The method presented in
[Gum02] is based on the notion of light entropy and
automatically computes lighting parameters but results are

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

not entirely satisfactory without the help of the user.

In the method of automatically computing of a minimal set of
camera position described below, only geometry is taken into
account.

Computation of a minimal set of camera positions is
performed in 4 steps:

1. Compute an initial set of camera positions by applying
uniform sampling on the surface of a sphere surrounding
the scene.

2. Using an evaluation function, evaluate each camera
position of the initial set and sort the set in decreasing
order, starting from the best position and finishing with
the the worst position.

3. Starting from the sorted initial camera position set, create
a new set by suppressing redundant camera positions, that
is, positions allowing to see only details visible from the
already selected positions in the set.

4. If the number of camera positions in the final set seems too
important, apply once again step 3 to this set in order to
get a really minimal set.

The obtained final set of non redundant camera positions can
be sorted according various criteria: quality of view, distance
from the previous position, etc. The best sorting criterion for
image-based modelling is probably distance from the
previous position.

3.1 Computing an initial set of camera
positions

This step consists in computing a sufficient number of
possible camera positions by sampling the sphere
surrounding the scene. Uniform sampling of the sphere is

performed by increasing the values of two angles and .

Increments ∆θ and ∆ϕ determine the sampling precision. In
figure 5 one can see three different sampling precisions on the
surrounding sphere of a scene.

Figure 5: Sampling of the surrounding sphere to determine
initial set of camera positions.

3.2 Evaluating the initial set of camera
positions

For each camera position of the initial set, the quality of this
position is computed by an evaluation function. The used
evaluation function is based on the notion of visual
complexity of a scene from a point of view [PSF04] and
computes the quality of view on the scene from a camera
position.

3.2.1 Evaluation function

Although a quality of view criterion is difficult to define,
because the notion of “good view” is partially subjective, a
number of objective elements may be retained to closely
approximate this notion. The chosen elements are: number of
visible polygons, number of visible objects and area of
projected visible part of each polygon. The notion of object
is used together with the notion of surface (or polygon)
because very often a scene is composed of triangles with low
semantic value. The notion of object, obtained by grouping
polygons, is more intuitive and useful because it is not
necessary to see all the polygons of an object to consider that
the object is visible.

The evaluation function proposed in [PSF04] is the
following:

I(V) =

[
Pi(V)

Pi(V)+1
]∑

i=1

n

n +

Pi(V)∑
i=1

n

r
where: I(V) is the importance of the view point V,

Pi(V) is the projected visible area of the polygon

number i obtained from the point of view V,
r is the total projected area,
n is the total number of polygons of the scene.

In this formula, [a] denotes the smallest integer, greater than
or equal to a.

Another evaluation function, proposed in [Sbert02] and based
on information theory is very close to the above one:

Hp(X) = - Ai
At

 logAi
At

∑
i=0

Nf

where Nf is the number of faces of the scene, Ai is the

projected area of the face i and At is the total area covered over

the sphere surrounding the scene.

3.2.2 Computing the evaluation function

To compute the main quantities required by the evaluation
function, that is number of visible polygons, number of
visible objects and area of projected visible part of a
polygon, two techniques may be used. The first one is a
harware based precise technique whereas the second uses a fast
approximated estimation.

Based on the use of the OpenGL graphical library and its
integrated z-buffer, the first technique [BDP99, Ple03] works
as follows. If a distinct colour is given to each surface of the
scene, displaying the scene using OpenGL allows to obtain a
histogram (figure 6) which gives information on the number
of displayed colours and the ratio of the image space occupied
by each color.

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

0 0 0 0 0 0 0 0 0 0
0 0 0 3 3 3 3 3 3 0
0 3 3 3 3 3 3 3 2 0
0 1 1 1 1 1 2 2 2 0
0 1 1 1 1 1 2 2 2 0
0 1 1 1 1 1 2 2 2 0
0 1 1 1 1 1 2 2 2 0
0 1 1 1 1 1 2 2 2 0
0 1 1 1 1 1 2 2 0 0
0 1 1 1 1 1 2 0 0 0

33

35

19

13

Background

Surface 1

Surface 2

Surface 3

0 10 20 30 40

Figure 6: Fast computation of number of visible
surfaces and area of projected visual part of the scene by image

analysis

As each surface has a distinct colour, the number of displayed
colours is the number of visible surfaces of the scene from the
current position of the camera. The ratio of the image space
occupied by a colour is the area of the projection of the visual
part of the corresponding surface. The sum of these ratios is
the projected area of the visible part of the scene. With this
technique, the two good view criteria are computed directly by
means of an integrated fast display method.

In some cases, accurate visual complexity estimation is not
requested, either because of need of real time estimation of the
viewpoint complexity or because a less accurate estimation is
enough for the application using the viewpoint complexity.
In such a case, it is possible to apply a second technique to
roughly estimate the visual complexity of a scene from a
given point of view, as follows:
A more or less great number of rays are randomly shot from
the point of view to the scene and intersections with the
surfaces of the scene are computed. Only intersections with
the closest to the point of view surfaces are retained (Figure
7).

Now, we can approximate the quantities used in viewpoint
complexity calculation. We need first to define the notion of
visible intersection. A visible intersection for a ray is the
closest to the point of view intersection of the ray with the
surfaces of the scene.
• Number of visible surfaces = number of surfaces containing

at least one visible intersection with a ray shot from the
point of view.

• Number of visible objects = number of objects containing
at least one visible surface.

• Visible projected area of a surface = number of visible
intersections on the surface.

• Visible projected area of an object = sum of visible
intersections on the surfaces belonging to the object.

• Total visible projected area = number of visible
intersections on the surfaces of the scene.

• Total projected area = total number of rays shot.

The main interest of this method is that the user can choose
the degree of accuracy, which depends on the number of rays
shot. Selective refinement techniques [Ple87, Rigau02b] may
be used to speed up the visual complexity estimation.

3.3 Computing a minimal set of camera
positions

Starting from the sorted initial set a new reduced set of camera
positions is created in the following manner:

Point of view

Figure 7: Approximated estimation of visual complexity

The current position in the initial set is compared to all the
positions of the reduced set of camera positions. If all the
visible details (surfaces and objects) from the current position
are visible from the camera positions already stored in the
reduced set, the current position is ignored. Otherwise, the
current position is stored in the reduced set of camera
positions.

The obtained reduced set is generally not minimal because
every position of the initial set is only compared to the
already existing camera positions in the reduced set. So, the
first positions of the initial set have a higher probability to
be retained for the reduced set than the last ones. However, it
is possible that some of these positions become redundant
after addition of new position in the reduced set.

To face this problem, an additional processing of the
elements of the reduced set is required. Every position of the
reduced set is compared to all the other positions of the set
and, if it doesn’t allow to see more details than the other
positions of the set, it is suppressed.

4. OFF-LINE PATH PRE-COMPUTING

For a computer games player it is important to well understand
the game and its environment. The camera has to move taking
into account the quality of view and the player’s comfort. This
requires a smooth movement of the camera. A camera path
with brusque changes of direction may be very perturbing for
the game player. What is needed is a set of interesting points
of view and a path to connect these points of view. As the
game environment is generally not changing, it is possible
to pre-compute the camera path in order to be able to use it in
real time during the game.

Of course, the camera movement may be influenced by the
game action but, in all cases it is important that the camera
manages its movement with as main goal to make the player
able to well understand the game.

In order to be able to compute an interesting path for the
camera it is necessary to first compute a set of interesting
points of view. So, the process of off-line camera path pre-

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

computing may be composed of two steps [Jau04]:

a. Computation of a set of interesting points of view for the
scene.

b. Computation of a smooth trajectory allowing the camera to
reach these points of view.

4.1 Computing a set of points of view

Techniques presented in section 3 may be used to compute the
required set of points of view. This has the advantage to use
alredy defined modules allowing other kinds of
improvements. These techniques may used to obtain a
minimal or a non minimal set of points of view. We think
that a minimal set of points of view is better for obtaining a
smooth path for the camera.

The obtained viewpoints have to be ordered according to some
ordering criterion. Two kinds of ordering have been tested:
Proximity-based ordering and minimal path-based ordering.

4.2 Computing a path for the camera

At the end of the ordering process, applied to the reduced set
of viewpoint, it is possible to compute a camera path.

Figure 8 : smooth path for scene exploration

The method has to avoid brusque changes of direction in the
camera movement. To do this, the following technique is
used.

Let us suppose (figure 9) that the current camera position on
the surface of the sphere is A and the viewpoint to reach is B.

A

B

A1
A2

d

A3

Figure 9 : Computing a smooth camera path

If the current direction of the camera movement at point A is
d, a new direction vector AA1 is computed inside the angle (d,
AB), where angle (AA1, AB) is equal to the angle (d, AB)/2,
and the next position A1 of the camera movement is defined

on the vector AA1. The length of AA1 is equal to the current
step of the camera movement. The same process is repeated
for each new step. If the distance of the current camera
position from the position B to reach is less than a threshold
value, the position to reach becomes the next camera
position. In figure 9, A, A1, A2, A3 and B are successive
positions of the camera.

In figure 8 one can see an illustration of smooth camera path,
obtained with the above technique. In many cases, minimal
path-based ordering allows to obtain better camera paths. On
the other hand, this kind of ordering is more time consuming
than proximity-based ordering.

5. CONCLUSION

Some intelligent techniques, generally based on visual
complexity evaluation, have been presented. The purpose of
these techniques is allow implementation of new tools
improving already existing ones for computer games.

The proposed techniques improve image-based modelling and
rendering as well as simplification of moving objects, in
order to get fast rendering. They also improve pre-computing
of camera motion, allowing fluid changes of the game
environment.

We think that similar techniques, based on heuristic search
and visual complexity evaluation, should be applicable to
other problems of computer games. One possible application
could be automatic estimation of the visual complexity of
game environments or objects, in order to allow intelligent
fluid selection of level of details (LOD) for the various objects
of the game.

Lighting of game environments is another important problem
because the player has to well see and understand the game
environment. How to choose light source positions [PPV03d]
and intensities? Intelligent heuristic search-based techniques,
evaluating the visual complexity of the different parts of a
game environment should allow to find interesting light
source positions. As light source positions may be pre-
computed for game environments, the selection process has
not to be very fast. We really think that techniques for
automatic selection of light source placements could be very
promising for computer games.

ACKNOWLEDGMENTS

This project has been supported and financed in part with
funds of the European project GameTools. It has also been
partly supported and financed by the Limousin Region
(France). The authors would like to thank all people and
organisations which have supported in any manner this
project.

REFERENCES

[And04] Carlos Andújar, Pere Pau Vázquez, Marta Fairén. Way-

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Finder: guided tours through complex walthrough models,
Computer Graphics Forum (Eurographics 2004), 2004.

[BDP00a] P. Barral, G. Dorme, D. Plemenos. Intelligent scene
exploration with a camera. International Conference
3IA’2002, Limoges (France), May 3-4, 2000.

[BDP00b] P. Barral, G. Dorme, D. Plemenos. Scene
understanding techniques using a virtual camera.
Eurographics 2000, Interlagen (Switzerland), August 20-
25, 2000, Short papers proceedings.

[BDP99] P. Barral, G. Dorme, D. Plemenos. Visual
understanding of a scene by automatic movement of a
camera. International Conference GraphiCon'99, Moscow
(Russia), August 26 – September 3, 1999.

[Coh03] D. Cohen-Or, Y. Chrysanthou, C. Silva, F. Durand. A
survey of visibility for walkthrough applications. IEEE
Transactions on Visualization and Computer Graphics
2003.

[Col88] C. Colin. A System for Exploring the Universe of
Polyhedral Shapes. Eurographics’88, Nice (France),
September 1988.

[Dur00] F. Durand. A multidisciplinary survey of visibility.
ACM Siggraph course notes Visibility, Problems,
Techniques, and Applications 2000

[Dur02] F. Durand, G. Drettakis, C. Puech. The 3D visibility
complex. ACM Trans. Graph. 2002, 21, 176-206.

[Feixas02] Miquel Feixas, An Information Theory Framework
for the Study of the Complexity of Visibility and
Radiosity in a Scene. PhD thesis, Technical University of
Catalonia, 2002.

[Feixas99] M.Feixas, E.Acebo, Philippe Bekaert and
M.Sbert. An information theory framework for the
analysis of scene complexity, Eurographics'99.

[Gra02] J. Grasset. Techniques for improving rendering: maps
and boxes. PhD thesis, Limoges (France), July 8, 2002 (in
French).

[Gra05] J. Grasset, D. Plemenos. Visibility-based
Simplification of Objects in 3D Scenes. Proceedings of
WSCG 2005 short papers.

[Gum02] S. Gumhold. Maximum entropy light source
placement. Visualization 2002 International Conference
(October 2002).

[HM03] M. Halle, J. Meng. Lightkit: A lighting system for
effective visualization. IEEE Visualization (2003).

[Jau04] B.Jaubert. Off-line automatic exploration of virtual
worlds. MSc report (in French), Limoges (France), July
2004.

[JPP02] V. Jolivet, D. Plemenos, P. Poulingeas. Inverse
direct lighting with a Monte Carlo method and declarative
modelling. Lecture Notes in Computer Science, 2002.

[KK88] T. Kamada, S. Kawai. A Simple Method for
Computing General Position in Displaying Three-
Dimensional Objects. Computer Vision, Graphics and
Image Processing, vol. 41, 1988.

[Lue95] D. Luebke, C. Georges. Portals and mirrors: simple,
fast evaluation of potentially visible sets. Proceedings of
the 1995 symposium on Interactive 3D graphics 1995,
105-ff.

[MAB97] J. Marks, B. Andalman, P. A. Beardsley, W.
Freeman, S. Gibson, J. Hodgins, T. Kang, B. Mirtich, H.
Pfister, W. Ruml, K. Ryall, J. Seims, S. Shieber. Design
galleries: A general approach to setting parameters for
computer graphics and animation. International
Conference SIGGRAPH 97.

[Nir02] S. Nirenstein, E. Blake, J. Gain. Exact from-region

visibility culling. Proceedings of the 13th Eurographics
workshop on Rendering 2002, 191-202.

[PB96] D. Plemenos, M. Benayada. Intelligent Display
Techniques in Scene Modelling. New Techniques to
Automatically Compute Good Views. International
Conference GraphiCon'96, St Petersburg (Russia), 1-5 of
July 1996.

[PF92] P. Poulin, A. Fournier. Lights from highlights and
shadows. Computer Graphics 25, 2, March 1992.

[Ple03] D. Plemenos. Exploring Virtual Worlds: Current
Techniques and Future Issues. International Conference
GraphiCon'2003, Moscow (Russia), September 5-10,
2003.

[Ple87] D. Plemenos. Selective refinement techniques for
realistic rendering of 3D scenes. International Journal of
CAD and Computer Graphics, vol. 1, no 4, 1987, in
French.

[PPV01] P.P. Vázquez, M. Feixas, M. Sbert, and W. Heidrich.
Viewpoint Selection Using Viewpoint Entropy. Vision,
Modeling, and Visualization 2001 (Stuttgart, Germany),
pp. 273-280, 2001.

[PPV02] P.P. Vázquez, M. Feixas, M. Sbert, and A. Llobet.
Viewpoint Entropy: A New Tool for Obtaining Good
Views for Molecules. VisSym '02 (Eurographics - IEEE
TCVG Symposium on Visualization) (Barcelona, Spain),
2002.

[PPV03] Pere Pau Vázquez, PhD thesis. On the Selection of
Good Views and its Application to Computer Graphics.
Technical University of Catalonia, 2003.

[PPV03b] Pere-Pau Vázquez and Mateu Sbert. Fast adaptive
selection of best views. Lecture Notes in Computer
Science, 2003 (Proc. of ICCSA'2003).

[PPV03c] Pere-Pau Vázquez and Mateu Sbert. Perception-based
illumination information measurement and light source
placement. Lecture Notes in Computer Science, 2003
(Proc. of ICCSA'2003).

[PPV03d] P.P. Vázquez, M. Feixas, M. Sbert, and W. Heidrich.
Automatic View Selection Using Viewpoint Entropy and
its Application to Image-Based Modeling. Computer
Graphics Forum, desember-2003.

[PPV03e] Pere-Pau Vázquez and Mateu Sbert. Automatic indoor
scene exploration. In International Conference on
Artificial Intelligence and Computer Graphics, 3IA’2003,
Limoges, May 2003.

[PRJ97] P. Poulin, K. Ratib, M. Jacques. Sketcing shadows
and highlights to position lights. Computer Graphics
International 97, June 1997.

[PSF04] D. Plemenos, M. Sbert, M. Feixas. On viewpoint
complexity of 3D scenes. STAR report. International
C o n f e r e n c e G r a p h i C o n ’ 2 0 0 4 , M o s c o w (R u s s i a) .
September 5-10, 2004.

[Rigau00] J. Rigau, M. Feixas, and M. Sbert. Information
Theory Point Measures in a Scene. IIiA-00-08-RR, Institut
d'Informàtica i Aplicacions, Universitat de Girona
(Girona, Spain), 2000.

[Rigau02a] J. Rigau, M. Feixas, and M. Sbert. New Contrast
Measures for Pixel Supersampling. Advances in
Modeling, Animation and Rendering. Proceedings of
CGI'02 (Bradford, UK), pp. 439-451, 2002. Springer-
Verlag London Limited, London, UK.

[Rigau02b] J. Rigau, M. Feixas, and M. Sbert. Entropy-Based
Adaptive Sampling. Graphics Interface 2003 (Halifax,
Canada), june-2003.

[Sbert02] M. Sbert, M. Feixas, J. Rigau, F. Castro, and P.P.
Vázquez. Applications of Information Theory to Computer

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Graphics. Proceedings of 5th International Conference on
Computer Graphics and Artificial Intelligence, 3IA'2002
(Limoges, France), pp. 21-36, May 2002.

[Tell91] S. J. Teller, C. H. Séquin. Visibility preprocessing
for interactive walkthroughs. Proceedings of the 18th
annual conference on Computer graphics and interactive
techniques 1991, 61-70.

About the authors

Dimitri Plemenos is a full professor at the University of
Limoges (France). His research area is intelligent techniques
in computer graphics, including Declarative Modelling,
Intelligent Rendering and Intelligent Virtual World
Exloration. He is author or co-author of several papers and
member of the IPC of many international conferences and
journals. Dimitri Plemenos is the organiser and general chair
of the 3IA international conference on Computer Graphics and
Artificial Intelligence.

Jérôme Grasset is professor in Computer Science at the High
School of Computer Science Engineering. of Limoges
(France). His research area is Computer Graphics.

Benoît Jaubert is a PhD Computer Science student at the MSI
laboratory of the University of Limoges (France). He is
working on defining new tool for computer games.

Karim Tamine is an associate professor in Computer Science
at the University of Limoges (France). His research areas are
Computer Graphics and Network Security.

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

