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Abstract 
We present the work in progress of a collision detection (CD) 
algorithm on a multi-threaded environment and based on two 
graphics processor units (GPUs); the first GPU is used as a 
normal graphics processor, and the second GPU is doubled as a 
‘collision detection’ coprocessor. Our approach makes use of the 
stream parallel engine provided by modern GPUs together with 
their native architecture for handling vector operations; thus we 
aim to perform fast and reliable collision detection. Our initial 
work involves multi-threading and incorporates a cheap pre-
processing stage for storing essential scene data in a format 
suitable for GPUs (i.e. as textures). It also involves multi-pass 
rendering in multiple stages. The first stage of collision detection 
is based on a simple boundary volume collision query. If the 
result is positive, a second stage is then executed, involving 
objects pair-wise computations on a per-vertex basis. The 
approach is being implemented on a single Processor NVIDIA 
Single-Link Interface (SLI) [1] System with two NVIDIA 
GeForce 6600GT graphics cards. 
Keywords: Real-Time Rendering, Collision Detection, Graphics 
Hardware, SLI, Multi-Threading, general-purpose GPU. 

1. INTRODUCTION 

In a virtual environment, computers have to emulate the 
conditions of the real world. This does not only involve using 
realistic computer generated models, but also the simulation of 
physical laws that allow a proper interaction between the user and 
every single object present in the environment. In other words, the 
better the approximation of the physics, the higher the fidelity of 
the virtual environment. Current graphic- subsystems allow the 
use of very detailed models at interactive framerates; 
nevertheless, they are always bound to the CPU computing 
power, which has to be shared for the calculation of physics and 
artificial intelligence (A.I.). The work in progress presented in 
this paper is an attempt to use the streaming parallel architecture 
of the state of the art GPUs, in combination with the new features 
brought forward by the latest generation of peripheral's 
interconnect (i.e. PCI-Express and SLI) and the future 
introduction of Dual-Core CPUs, to do very fine physics 
calculations, more specifically, collision detection computations 
for interactive virtual environments. We define as interactive, a 
virtual environment that is able to refresh the scene and give 
feedback to the user’s inputs at least 30 times per second. 
With the introduction of 3D graphics hardware, virtual 
environments have benefit with more detailed and complex 
models. Nowadays, a single object can easily contain 100K 
triangles of complexity; further, a single scene can contain several 
of these objects easily increasing the scene complexity to over 1M 

triangles. Intersecting surfaces and penetration depth algorithms 
have been very well-studied in the last few decades to generate 
efficient algorithms that can work in interactive real-time 
applications. Some of the commonly used methods involve a pre-
computing stage where all objects in a particular scene are 
analysed and stored in special structures known as boundary 
volume structures (i.e. OOBB, AABB, distance/field, etc.); they 
work well on models undergoing rigid motion. 
In the past few years graphics hardware has overcome Moore’s 
curves predictions [2]. This and the continuous growth in graphics 
hardware requirements have pushed manufacturers to 
incorporated programmable units inside their GPUs. This has 
given developers the flexibility to create customized effects 
through the use of specialized programs known as ‘shaders’; 
GPUs can now be seen as a stream parallel computer. Based on 
this new computing power offered in desktops and workstations, 
several algorithms for tackling the collision detection problem 
have been proposed. The remaining of this paper will be 
presented as followed:  

• Section 2 is a brief review of related collision detection 
algorithms;  

• Section 3 introduces the basic assumptions to solve the 
simplest case with our method, and the stage involved 
in our ongoing work; 

• Section 4 presents a discussion and future work; 

2. RELATED WORK 

Collision detection is the heart for simulating interactions between 
objects, and it is the main component that gives the user a feeling 
of presence. It is also the most difficult aspect of a physical 
engine to implement correctly, and invariably, it is the main 
consumer of CPU power. The earliest applications of 3D collision 
detection are found in robotics and automation [3][4]. In computer 
animation, the first uses of collision detection are found in 
physics-based simulations, where it is essential to determine 
collisions in a physically convincing manner and at interactive 
rates. Because of the complex nature of this task the use of 
accelerating techniques is required for interactive environments. 
Lin and Canny [5] presented one of the first algorithms that 
exploit temporal coherence to reduce the cost of collision 
detection; their method caches an update the closest features 
(vertices, edges, facets) of objects in every new frame. Lin and 
Canny realized that if frame coherence is high in a scene it is 
faster to update the closest filters of a pair of objects from the 
previous frame, than to calculate everything from zero. This 
technique is applied in I-COLLIDE [6], the first the public library 
of collision detection. The most commonly CD algorithm used are 
based on boundary volume hierarchies (BVH). Basically, these 
algorithms enclose the model of interest in a ‘watertight’ volume. 
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Volume structures such as spheres [4], axis-aligned bounding 
boxes (AABB) [7], object-oriented bounding boxes (OOBB) [8], 
discrete orientation polytopes (k-dops) [9], have been frequently 
used. These structures aim to accelerate the CD computations to 
allow interactive applications. However, with the increasing 
model’s complexity and increased scene detail users expect finer 
and more realistic collision detection. 
With the advent of computer graphics hardware, various 
approaches employing graphics hardware for collision detection 
have been introduced. We can divide these approaches into two 
different categories; image-based, and object-based. Due to the 
nature of computer graphics and the different optimizations 
present in graphics hardware (i.e. depth, accumulator and stencil 
buffers), image-based collision detection has been of more 
interested for researchers. An early attempt of using hardware 
depth buffer was presented by Shinya et al [10]. Myszkowski et 
al. [11] presented another algorithm that used a combination of 
stencil buffer and depth buffer operations to implement collision 
queries. These early attempts were only applicable to convex 
objects and could not be applied for more than two objects. Baciu 
et al. [12] extended the latter to compute the area of overlap 
between two interfering solids. Recently, more efficient image-
based collision detection methods have been introduced. 
Govindaraju et al. presented an image-based collision detection 
approach known as CULLIDE [13] Their methods do not require 
a pre-processing stage, making it ideal for handling non-rigid 
motion. They perform a set of visibility queries from different 
views in a multiple-pass rendering technique to compute what 
they call a Potentially Colliding Set (PCS).. Once the PCS is 
created, a second stage is carried out at primitive level (i.e. 
triangles) to obtain a PCS at sub-object level. Thus the amount of 
pair-wise computation needed to perform exact collision tests in 
the CPU is reduced. Q-CULLIDE [14] and R-CULLIDE [15] 
present optimizations over the original method. They also extend 
CULLIDE to perform self-collision detection (self-CD). Although 
these methods are suitable for manifold and non-manifold objects, 
they cannot compute overlap information and depth of penetration 
in a collision. 
Heidelberger et al. have also presented image-space based 
approaches relying on volumetric collision queries for non-
manifold objects [16], [17], and [18]. Their algorithm proceeds in 
three stages: the first stage computes the Volume-of-Interest (VoI) 
as an AABB representing the volume where collision queries are 
performed (intersection of two objects’ AABB, or for self-CD, the 
objects AABB). The second step is to compute a LDI (Layer 
Depth Image) for objects inside the VoI. A LDI consists of 
images storing the depth values, front-face and back-face 
classification of the objects’ primitives. The LDI is used for: self-
collision, collision between objects, and vertex-in-volume tests. 
For self-CD, the entry and exit points registered in the LDI are 
tested. If the evaluation does not record an entry point followed 
by an exit point, self-collision is detected; for collision detection 
between objects, their LDIs are combined using Boolean 
intersection. Finally, individual vertices are tested against the 
volume of the object. The vertex is transformed into the local 
coordinate system of the LDI. If a transformed vertex intersects 
with an inside region, a collision is detected.  
The main drawback of image based methods is that they are 
limited to image-space resolution i.e. a resolution of 640x480 
pixels may miss more collisions than a 1024x768pixels 
resolution. In contrast, Object-based methods do not have this 

downside; however they have not been very well studied yet. 
Choi et al. [19], rather than offering an interactive collision 
detection algorithm for large and complex environment, they offer 
a GPU-based approach to detect self-collisions inside a 
deformable object. The technique detects pair-wise collisions 
among vertices within the object, and renders the results in a 

texture of dimensions mm×  ( )Nm 2log2= , where N is the 

number of triangles of the object, and . To implement 
collision detection on the GPU, they store the position of a 
triangle in three different 1D-textures of size m (one per vertex). 
These textures are continuously mapped into a quad both, 
horizontally and vertically. Thus, a pair-wise comparison of the 
object’s primitives is undertaken in the GPU. The Stencil buffer is 
used to avoid processing adjacent and distant triangles. Kolb et al. 
[20] offer another approach for collision detection fully performed 
on a GPU. Although the technique is focused on simulating state-
preserving particle systems, it offers a novel technique to 
represent directional data applied to store indexed normal vectors. 
The technique consists of a heap structure that stores all available 
indices and that it is optimised to always return the smallest 
available index. Kolb’s collision detection technique uses depth 
maps to store the information relative to a particle (distance to the 
collider object, relevant object surface point, transformation 
matrix, z-scale factor) in video memory, and compute distance 
queries and collision between a particle and the collider object. 
Since math operations are executed on the GPU, this approach is 
dependent on hardware resolution (amount of bits assigned per 
component) rather than image-space resolution. For instance, a 
GPU able to handle 128-bit colours (i.e. 32-bits per component) 
will give better CD results than a GPU only capable of 96-bits 
colours (i.e. 24-bits per component). This approach presents a full 
framework for collision detection/collision reaction based 
completely on general-purpose GPU computations (GPGPU). 

Nm ≥

3. METHOD 

This section presents an overview of the system setup followed by 
a set of basic assumptions for our approach and a detailed 
description of the Multi-pass Multi-stage Multi-GPU Collision 
Detection or M3CD algorithm 

 
Figure 1: Environment setup 

Figure 1 shows the programming structure we have decided to 
follow. The platform selected is WIN321 because it was the first 
platform to offer SLI enabled drivers. As of today, neither the 

                                                                 
1 Microsoft® Windows® XP Professional Edition 
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OpenGL API nor the graphics hardware drivers offer a direct way 
to select a GPU to carry our an arbitrary process; hence, our 
approach creates one window per thread, each one with its own 
device context and rendering context. This way we can target a 
specific GPU for the operations we want it to perform. 
Furthermore, the window in thread B is an invisible window, 
since it is only the off-screen buffers we are interested to handle 
here. The multithreading approach also allows us to perform 
collision detection in a virtually independent way. Besides, it will 
benefit of the introduction of dual-core CPUs. 

3.1 Basic Assumptions  
In order to simplify the problem some basic assumptions need to 
be made. Although problems may arise from these assumptions, 
they help solving the simplest case. Later on the algorithm will be 
improved to circumvent any existing problems. 

1. The objects that the algorithm is dealing with are convex 3D 
objects only (in the near future the algorithm will work for 
non-manifold objects)  

2. Detection of any pair of bounding volumes and vertices 
colliding is a well-defined and solved problem.  

3. Both objects have a pre-calculated center point and a 
bounding sphere radius (BSR).  

4. Object A has N vertices while object B has M vertices.  
5. N = M 
6. Objects are subject to a rigid motion only and the direction 

of this motion is known at any time (in the future the M3CD 
algorithm will be extended to handle non-rigid motion).  

If assumption 3 is not meet, then a pre-processing stage is 
engaged to calculate the geometric centre of the object together 
with the radius of the bounding sphere. 

3.2 The M3CD Method 
Input. Our approach takes the geometric centre of every 3-D 
object in the scene, plus the radius of the smallest sphere 
surrounding the object. 
Output. The algorithm computes collision queries in two 
different stages. If queries are positive in both stages, then the 
properties of the objects involved in the collision are modified 
(i.e. direction and origin) and results are feedback to the rendering 
thread. 

 
Figure 2: Algorithm Overview 

As shown in Figure 2, our approach proceeds in three stages. 

3.2.1 Sphere Intersection 
The centre point (a 3D-vector) and BSR (a scalar) of every object 
are stored in a 2D RGBA floating point texture, so that one object 
corresponds to one texel. The stage is divided in two passes; the 
first pass will set the stencil buffer so that only the texels 
containing object’s data. This first pass is very fast and helps 
minimizing overheads in the fragment shaders. The second pass 
will render a full-screen quad into the off-screen buffer and map 

the texture to it. Figure 3 shows an example of how the textured 
quad should look before and after stencil test is done.  

 
Figure 3: Original Texture without stencil test (right) and Texture 

read after stencil buffer test [texels in grey are not considered] 
(left). 

The mechanism employed in the fragment shader to perform 
sphere intersections is very simple: a) intersections are done pair-
wise, b) intersections are done following a permutation basis i.e. 
object B can only be compared with object A once, regardless of 
the order. Hence if we have N objects, the number of operations 
are reduced to the factorial of (N-1). 
If two spheres do not overlap, the corresponding objects cannot 
collide. Otherwise, the objects involved are stored pair-wise in a 
stack structure, creating a ‘Potentially Colliding Batch’ (PCB) fur 
further processing. 

3.2.2 Vertex Collision Query 
Stage 2 executes a finer collision query between each pair of 
objects inside the PCB. Following the basic assumptions earlier 
stated, in order to detect a collision between two objects, the most 
simple but inefficient method of checking every vertex in object 
A against every vertex in object B is performed. For the brute 
force method therefore an order magnitude of O(N2) represents 
the time complexity of the algorithm. For this stage vertices of 
both objects are stored in a single texture or Vertex-Texture Map 
(VTM). The texels located in the first half of the texture represent 
the vertices belonging to object A; likewise, the second half of the 
texture represents object B as shown in Figure 4. 

 
Figure 4: Vertex-Texture Map (VTM) 

The collision queries performed in this stage use the Euclidean 
distance between vertices. If the distance between any pair of 
vertices is less or equal to zero, a collision is detected and both 
objects are marked. 

3.2.3 Collision Reaction 
Stage 3 checks the result from the previous stage. When a pair of 
objects inside the PCB is found as marked, their centre point 
coordinates and motion’s direction are uploaded into texture 
memory (following the multi-pass rendering process mentioned in 
stage 1. A fragment program is then executed to calculate the new 
centre point coordinates (if necessary), and the new direction. 
This data is read back from the graphics hardware, and is used to 
update the state of each object. Results are then submitted to the 
main thread for updating the scene. 
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4. CONCLUSSIONS AND FUTURE WORK 

This paper has presented the first stage of this project, which is to 
provide the simplest framework for accelerating collision 
detection using the streaming parallel computing features of 
current graphics hardware. The main disadvantage of the 
technique described in the computing intensive task currently 
employed for calculating fine collision detection. Nevertheless, 
there is a lot of room for this algorithm to be improved. The aim 
is to create a novel and robust method for accelerating collision 
detection for complex models in large scale. Furthermore, due to 
the parallel nature of the algorithm it can also be suitable for 
applications such as cloth simulation and medical simulation 
among other physically based simulations. Unfortunately, we are 
at an early stage of the project and proper results cannot be 
presented in this paper yet. However, results will be available 
before the presentation of this paper. 

4.1 Future work 
It is obviously that the brut force approach used to compute the 
collision detection at vertex level can overwhelm the processing 
capabilities of the latest generation of GPUs; especially when 
complex models are involved. Ongoing work is already 
concentrating on a set of algorithms to reduce the set of vertices 
involved in the vertex collision detection stage. Furthermore, the 
algorithm could benefit of the use of multiple-render targets 
(MRTs), which allow the graphics hardware to output up to four 
4-vector values per processed fragment. Finally, different 
methods for storing data in texture memory are being studied and 
tested [21], [22]. 
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