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Abstract 
Spatial patch is a new kind of rendering primitive that allows 
convenient and compact representation of surfaces for real-life 3D 
objects. In [1] and [2], several algorithms for z-buffer 
visualization of spatial patches are presented. However, z-
buffering approach cannot provide photo-realistic quality of 
rendering. On the contrary, such quality can be obtained by means 
of ray tracing – a well-known method of realistic image synthesis. 
Being quite distinct from most of traditional ray tracing 
primitives, spatial patches possess different challenging features, 
which can be efficiently exploited by the modification of this 
technique. In order to exploit them, we propose to find parameters 
of ray - surface intersection approximately, where precision of 
operation is naturally defined by a size of a pixel. In case of 
spatial patches, such an assumption gives significant speed-up and 
possibility of rendering with optimal level of details. 
In this paper, an efficient algorithm for ray-patch and ray-patched 
scene intersections calculation is presented. The paper starts with 
a method of representing spatial patches as hierarchies of 
bounding boxes. Employing existing techniques, these hierarchies 
can be linked into a single one that represents the whole scene. 
Then, the calculation of ray-tree approximate intersection is 
discussed. Experimental results, proving ray-tracing suitability of 
spatial patches, are presented as well. 
Keywords: Spatial Patch, Ray Tracing. 

1. INTRODUCTION 
1.1 What is Ray Tracing? 
Creation of photo-realistic images of 3D environments is a 
traditional application of computer graphics. Ray tracing is a 
powerful, simple, and the most widely used technique of this field. 
While more powerful approaches emerged in recent years, almost 
all of them employ ray tracing. 
Image synthesis in classical ray tracing is performed as follows. A 
ray, starting in the observer eye and passing through the center of 
the pixel on the screen plane, is shot. Its intersection with the 
environment is found, determining an object visible through that 
pixel. Thus, a primary ray is traced. Refracted and reflected rays 
are shot from the point of intersection if the object is reflective or 
transparent. In addition, tracing of shadow ray towards a light 
source shows whether a given source lights a point or it is 
occluded. Finally, initial color of the material, results of reflected 
and refracted rays tracing, and lighting define pixel color. 
Various ways of accelerating ray tracing have been invented for 
decades. In this paper we utilize some of the proposed ideas. 
One of the most attractive features of ray tracing is its 
universality. Environments can consists of different objects such 
as polygons, splines, voxel grids, explicitly and implicitly defined 
surfaces etc.  To make ray tracing on some sort of object possible, 
a procedure of ray - object intersection should be presented. Of 
course, this procedure ought to be as fast as possible, since the 
speed is often desired. 

Abundant information on ray tracing can be found in [9], while 
this paper is dedicated to ray tracing on spatial patches. 
1.2 What is Spatial Patch? 
Spatial a patch is a new kind of rendering primitive. It can be 
defined as a dense range image of a small part of a surface. More 
formally, spatial patch (Figure 1) is defined by the origin point P, 
orthogonal frame (Δx,Δy,Δz), and a rectangular m×n array of (c,d)i,j 
pairs, each representing a point Ni,j=P+iΔx+jΔy+di,jΔz of color ci,j 
on a surface (some color value denotes transparency). We call this 
colored point a node. For each node Ni,j, a normal can be 
estimated as a normalized cross product of Ni+1,j - Ni-1,j and Ni+1,j - 
Ni-1,j vectors. 
Surface can be regarded as a set of quadrangle cells {Qi,j}, each 
having vertices in non-transparent points Ni,j, Ni+1,j, Ni+1,j+1, and 
Ni,j+1. All cells adjacent to a transparent node are regarded fully 
transparent. 
Any 3D surface can be represented with the required level of 
accuracy by a set of spatial patches. We also assume, that each 
patch represents relatively small part of a surface. 
 Further details on the concept of spatial patches can be found in 
[1] or [2]. 
In the sequel, we make an additional assumption that m = n = 
2k+1, where k is non-negative integer. Given spatial patch of 
arbitrary m and n, it can be supplemented with transparent cells to 
meet this assumption. 
Below, the initial coordinate system is referred as world (though, 
it is denoted as model in [1] and [2]). We will also operate with 
patch coordinate system, defined by patch orthogonal frame (see 
Figure 1). 
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Figure 1: Spatial Patch definition 

 
To extend ray tracing to the newly defined primitive, solution for 
typical ray - environment intersection problem should be found 
(i.e. an algorithm for finding intersection of an arbitrary ray with 
an arbitrary scene comprised of spatial patches should be 
presented).  
1.3 Ray Tracing on Spatial Patches 
As it was mentioned above, one can consider the whole scene as a 
set of quadrangle cells. By treating each cell as a pair of triangles 
or as a bilinear quadrangle, the scene can be reduced to either a 
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triangle set or to a set of explicitly defined surfaces – traditional 
environments for ray tracing. This straightforward algorithm has 
serious drawback: it has to operate with a vast number of tiny 
primitives, without exploiting their natural regularity. 
In this paper we describe a technique of intersecting ray with a 
hierarchy (tree) of nested axes-aligned boxes, whereas this 
hierarchy has infinite depth and the intersection should be found 
with some pixel size-based precision. This approach, in our 
opinion, seems to be more natural and efficient for scenes 
represented by spatial patches. Construction of this hierarchy for 
3D scenes is described in Section 2, whereas the process of ray-
scene intersection is presented in Section 3. The paper concludes 
with discussion of our practical results. 

2. SCENE TREE 
In this section a scene represented by spatial patches (a patched 
scene) is considered. Basing on this scene an infinite-depth 
hierarchy of nested boxes called scene tree is created. The 
sequence of tree levels converges to the surfaces represented in a 
scene. 
2.1 Upper Layer 
To construct the upper layer of the tree we employ Goldsmith-
Salmon [4] algorithm that allows construction of bounding 
volume hierarchies optimized for ray tracing. Restricting volume 
type to axes-aligned boxes, we obtain a tree of nested bounding 
volumes, in which each leave is a bounding box of a single patch. 
Hierarchies produced with Goldsmith-Salmon algorithm are 
proved to exploit scene coherences efficiently; therefore, they are 
often superior over conventional spatial subdivisions (octrees, 
regular grids), BSP-trees, etc. Nevertheless, these standard 
methods work with patched scenes efficiently, as well. 
2.2 Patch tree 
Obtained tree is finite and don’t converge to a scene surface. 
Hence, each leaf, i.e. bounding box of a patch, should be replaced 
with an infinite subtree representing a surface defined by that 
patch. Let us call this subtree a patch tree. For this tree we use 
either world system axes-aligned boxes (world-oriented patch 
tree) or patch system axes-aligned boxes (patch-oriented patch 
tree) – see Figure 2. To each box in a patch tree we attribute a 
normal and a color, approximating mean color and normal 
throughout the surface enclosed in the box. 

World axes
 

Figure 2: Patch layer for world-oriented (left) and patch-oriented 
(right) hierarchies, shown for 1D “patches” in 2D space. 

2.2.1 Patch Layer 
We recall, that we consider patches of (2k+1)×(2k+1) nodes in 
size. The upper box in the patch layer is simply a bounding box of 
all non-transparent nodes. After that, we subdivide our patch into 
four adjacent subpatches of (2k-1+1)×(2k-1+1) in size, and store 
their bounding boxes as children in a quadtree. Then this 
procedure is recursively repeated for the children until the size of 
3×3 is reached. 

Boxes, containing only transparent nodes, are expelled. For 
others, arithmetical mean of normals and colors for non-
transparent nodes inside is looked up.  
2.2.2 Cellular Layer 
The lowest level in the patch layer is the level of 3×3 subpatches. 
In the next patch tree level bounding boxes for single cells are 
situated. To obtain lower levels of patch tree surface interpolation 
(subdivision), refining our patch, is required. In [1], [5], [7], and 
[8] some existing approaches to subdivisions and mesh 
interpolations are presented. Below we will distinguish nodes that 
are precalculated directly from patch (primary nodes), and nodes 
obtained during interpolation (secondary nodes). All calculations 
for nodes are performed in the same coordinate system as for 
boxes.  
Below in the section we consider a node as a point in 9-
dimentional space (3 dimensions for point, 3 -for normal, 3 -for 
color). 
Consider an arbitrary cell. Denote its nodes by A, B, C, and D 
(Figure 3). Two types of recursive subdivisions, namely bilinear 
and smooth, may be used for interpolation. In both cases, on each 
step of recursive subdivision middle points of cell edges (nodes K, 
L, M, and N on Figure 3) and the central node (node O) are 
interpolated. For bilinear subdivision interpolation is 
straightforward: 
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Thus, four smaller cells (interpolated cells of first generation) 
AKON, KBLO, OLCM, NOMD are obtained; their bounding boxes 
(calculated as bounding boxes of four points of their nodes) form 
the next level in the hierarchy. Each of these cells can be 
subdivided in the same way, if necessary.  
The surface obtained during bilinear interpolation of cell interiors 
is not smooth on the cell edges, which, however, does not result in 
visible artifacts, provided that cells are of not more than several 
pixels size (the most often case). In the reminder cases, restoring a 
smooth surface over a whole patch is more suitable. 
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Figure 3: Recursive subdivision (left − bilinear, right − smooth) 

In order to obtain such surface, we modified Kobbelt interpolatory 
scheme [8] developing a method of smooth interpolation of cell 
interior. In the case of smooth subdivision, we need to assign to 
each node two tangent 9-tuples: dX and dY − black and white 
arrows on the figure. For primary node Ni,j, dXi,j = (Ni+1,j - Ni-

1,j)/16 and dYi,j = (Ni+1,j - Ni-1,j)/16, for secondary node they are 
interpolated.  
Then, nodes are interpolated in the following way: 
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Now smaller cells are obtained. For A, B, C, and D tangents are 
simply divided by two. For other nodes, tangent vectors are 
interpolated as follows: 
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In case of smooth interpolation, there arise the problem of finding 
a bounding box enclosing a surface within a cell. It can be solved 
for patch-oriented hierarchy by expanding a bounding box of cell 
nodes in z-direction by a value determined by tangent vectors. 
Bounding boxes in patched and upper layers should be expanded 
as well. 
For each cell an average color and a normal are found as averages 
of cell nodes colors and normals.  
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Figure 4: Scene Tree 

In our implementation, all interpolated nodes are calculated on 
demand and are not stored. However, some cache techniques may 
be used. Furthermore, if before tracing some patch is known to be 
low refined (in the sense that its nodes are likely to require deep 
and frequent interpolations), all secondary nodes up to some 
generation level can be interpolated, stored, and later treated as 
primary ones. Still, this process is restricted by available amount 
of memory. 
Thus, a scene tree is constructed (Figure 4). Logically, it has 
infinite depth, while, in practice, its lower levels in cellular layer 
are calculated up to a certain depth.  

3. RAY – ENVIRONMENT INTERSECTION 
3.1 Notations and Definitions 
Assume a ray with a starting point S, and a direction vector D (|D| 
= 1). Let us attribute to it two additional values: an initial 
threshold of details T0, and a non-negative threshold of details 
increment ΔT. To each non-negative ray parameter t we assign a 
point P(t) = S+D*t and threshold of details T(t) =T0+ΔT*t. 
Threshold of details T(t) defines desired accuracy of operations 
(intersections) in the neighborhood of point P(t). Thus, if P(t) ∈ 
screen_plane, T(t) should equal 0.5 × size_of_pixel. 
An ordered pair [a, b], where 0 ≤ a ≤ b, define a line segment Δab 
= [P(a), P(b)] on a ray. Such a segment is called a ray segment. 
The segment threshold of details denotes the value T(a). 
Let a ray segment Δcd be nested in a ray segment Δab, if a ≤ c ≤ d ≤ 
b. 
3.2 Ray Segment - Box Intersection 
Consider an arbitrary axes-aligned box B and an arbitrary ray 
segment Δab.  
There are two possibilities: either they don’t intersect or their 
intersection is a ray segment Δcd that is nested in Δab. Well-known 
Cohen-Sutherland algorithm [3], extended with calculation of ray 
parameters of new points, is used here. 
Assume a box and a segment intersect. If all dimensions of the 
box xmax – xmin, ymax - ymin, zmax – zmin are less than segment 
threshold of Δcd, then the box fits precision. Otherwise, the box 
doesn’t fit precision. 
Thus, possible relative positions are classified into three 
categories: a box and a ray segment don’t intersect, a box and a 
ray segment intersect and the box fits precision, a box and a ray 
segment intersect and the box doesn’t fit precision.  
3.3 Ray Segment – Scene Tree Intersection 
Now, a problem of ray – environment intersection calculation is 
substituted for ray segment – scene tree approximate intersection 
problem calculation. 
Intersection of a ray and a volume hierarchy is considered in a 
number of works ([4], [5], [6]). In our case the following recursive 
scheme is suitable: 
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IntersectionInfoStructure intersection; 
 
bool Intersect( Ray Segment Δab, 
             Scene Tree Node Node ) 
{ 
  Ray Segment Δcd = Δ  ∩ Node.Box; ab
  if( Δ  is empty ) cd
         return false; 
  if( N ∉ Upper Layer && ode 

Node.Box.FitsPrecision(T(d)) ) 
  { 
    .Normal = e.Normal; intersection  Nod
    .Color = Node Color; intersection .
    .Parameter = d; intersection
    intersection.Point = P(d); 
    return false; 
  } 
 
  bool result = false; 
  for( every children Child ) 
  { 
    if( Intersect(Δcd, Child) ) 
    { 
       tersection.parameter; d = in
       result = true; 
    } 
  } 
  return result; 
} 
 
Thus, the process will stop when tree node’ box fits the precision. 
Hence, the less is desired precision the faster is intersection. 
Below peculiarities of ray segment – tree node intersection for 
boxes from different layers of the scene tree are observed. 
3.4 Intersection with nodes of Patch Tree 
There are a number of pre- and postprocessing operations required 
for this layer in some cases. 
First, if with patch-oriented hierarchies are used, a ray should be 
converted to patch coordinates before intersecting with patch 
layer.  
Besides that, on a postprocessing stage the intersection’ normal 
vector needs to be normalized, as a normalized vector is desired 
for lightning and secondary rays shooting. In addition, in case of 
patch-oriented hierarchy, the normal vector as well as an 
intersection point should be converted back to world coordinates. 
Still, all these operations are computationally expensive. When 
consider an intersection of a ray segment with the whole scene, 
one should perform them only for the ultimate intersection, not for 
each intersected patch (there can exist several). In order to do that, 
a pointer to the nearest intersected patch should be stored along 
with other intersection parameters. 

1
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Figure 5: Optimized order of children traversal 

One important optimization concerning the order of children 
traversal can be implemented as well. Analyzing the ray direction 
vector in patch coordinates, the optimal sequence of children 

traversal can be found. Indeed, a ray segment with a child 
possessing nearer box should be tested for intersection first and 
those with those of farther boxes should be tested last, since 
intersection with the latter is unnecessary if the former is 
intersected (Figure 5). Note that, such a sequence is constant over 
the whole patch tree. 
3.5 Intersection with Upper Layer 
Though a scene tree does not possess in the upper layer that 
regularity as in patch and cellular levels, optimizations in child 
traversal can be done. We implemented one of traditional 
techniques. On a preprocessing stage, we sort children boxes by 
their least coordinates of projections on six world semi-axes, thus 
obtaining six lists. When shooting a new ray, we find which of 
semi-axes lies closer to its direction vector, i.e. we find dominant 
direction of the ray. Now, intersection with the children, if 
performed in the sequence stored in respective list, may be 
stopped when the dominant coordinate of the next box exceeds 
that of current intersection. 
3.6 Shooting ray segments 

Screen

Eye
O

A

 
Figure 6: Primary ray 

To generate a primary ray segment from the eye O to the pixel A 
(see Figure 6), a ray tracer ought to create a ray, having its starting 

point at O, its direction vector equal to OAOA / , its initial level 

of details equal to zero, and its level of details increment equal to 

maximum of pixel width and height divided by OA⋅2 . The 

initial ray segment is [ OA , OA +2*scene_radius].  
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Figure 7: Secondary rays  

To shoot a secondary ray, a normal at the point of intersection 
should be looked up. Assume that in the process of ray segment – 
scene tree intersection we get point O and a normal vector, which 
equals to either n+ or n– (in notation of Figure 7). To distinguish, 
is it n+ or n–, its dot product with the ray direction vector is 
computed. This value is positive for n+ and negative for n–. Thus, 
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we determine, which of two vectors we deal with, calculating the 
other.   
Afterwards, reflected, refracted and shadow ray segments are 
generated. Direction vectors are calculated as usually in ray 
tracing. Initial thresholds of details are set to initial ray threshold 
of details at point O, while threshold of details increments remain 
the same. In order to avoid self-occlusions we can use O+ as a 
starting point for refracted ray, and O– for shadow and reflected 
rays. These points are obtained by a slight shift of point O along 
n+ and n– respectively by a threshold of details at point O  (see 
Figure 7). 
This scheme successfully solves self-occlusion problem. 
However, when a ray is almost exactly tangent to surface and the 
dot product of its vector with the normal vector is very close to 
zero, n+ and n– can be confused, thus causing an artifact pixel. 
Still, this effect is rare. Furthermore, it can be completely 
eliminated, if we state that a patch represents only one side of the 
surface (if necessary other side can be represented by another 
patch). In this case we always treat a normal vector obtained from 
intersection as n–. If its dot product with the direction vector is 
positive then a patch is ignored (back face culling). 
 To conclude this section, we would like to emphasize that above 
a method of ray segment - patch tree intersection is given 
implicitly, and, thus, the ray – primitive intersection problem is 
solved. Therefore, a spatial patch becomes a full value ray tracing 
primitive. The following section proves its suitability for ray 
tracing. 

4. PRACTICAL RESULTS 
We have implemented a ray tracer based on the described above 
algorithm, which is capable of creating images of arbitrary 
patched scene.  Since it was designed for testing and evaluation of 
tracing features peculiar to this kind of scenes, we did not supply 
it with all traditional acceleration techniques or techniques that 
enhance photo-realism. At the same time, experiments prove 
efficiency of our method in reducing of intersection to a sequence 
of segment - box clippings. 
The scene presented at Figure 8 consists of two teapots each made 
of 2928 patches (patched model of the famous teapot was 
obtained from the polygonal one using the method described in 
[2]). Each patch has 17×17 node grid. Simple computations show 
that conversion to triangles would lead to a large (∼3 million) 
number of them. 

 
Figure 8: Ray tracing example 

We traced our scene at 1024×768 and 256×192 resolutions. Nodes 
were interpolated bilinearly. The following table summarizes 
results for cases of patch-oriented and world-oriented patch trees. 
The second column presents total numbers of traced rays that 
intersect at least upper box of the scene tree. The next column 
gives average number of Cohen-Sutherland ray segment – box 
clippings. The third column gives an average number of 
interpolated boxes (i.e. calculated tree nodes in cellular layer). 
The last column gives a time taken by tracing (preprocessing time 
not included). Calculations were performed on a Pentium II - 450 
MHz processor. 
 

Resolution 
and 

orientation 

Number 
of rays 

Clippings 
per ray 

Interpolated 
boxes per 

ray 

Tracing 
time 
(sec) 

1024×768 
(patch) 1,412,036 22.2 5.2 140 

256×192 
(patch) 87,755 17.3 0.06 6 

1024×768 
(world) 1,410,639 26.0 10.8 182 

256×192 
(world) 87,540 18.7 1.6 8 

5. CONCLUSION  
In this paper we presented a complete method of photo-realistic 
rendering of 3D scenes by means of ray tracing. In practice, it 
appeared to work efficiently due to key properties of spatial 
patches, such as small size and regular internal structure. 
The use of hierarchy of nested boxes for spatial partitioning of 
patch clusters provides fast selection of the candidate patches that 
require further processing, i.e. calculation of the intersection 
points if intersection occurs. Goldsmith-Salmon approach for 
constructing of such hierarchy proved to yield a tree of boxes that 
allow for very fast processing. In addition, we expect that other 
known spatial partitioning strategies, including octrees, regular 
grids, BSP, and others, would work as efficient as the 
implemented technique. 
The hierarchy of boxes within a patch seems to be quite natural 
for the proposed primitive. It utilizes patch’s internal regularity 
and, hence, requires little additional storage space. Construction of 
this structure can be implemented efficiently, and, in fact, may be 
executed on-the-fly if memory resources are critical. 
It is important that the proposed strategy allows for any kind of 
surface interpolation within a patch, including the least accurate 
piecewise linear, bilinear or more smooth ones. The resulting 
image can be obtained with any desired degree of accuracy; 
commonly known techniques of super- and stochastic sampling 
can be directly applied as well. 
Thus, the representation of 3D models with spatial patches proved 
to be efficient not only for rendering using z-buffer (which is 
discussed in [1]), but also for photo-realistic rendering exploiting 
ray-tracing ideology. This fact significantly widens area of 
application of spatial patch technology, ensuring its compliance 
with various needs of 3D graphics practitioners. 
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