
Adaptive Ray-Tracing on Spatial Patches
Victor S. Lempitsky, Denis V. Ivanov, Yevgeniy P. Kuzmin

Department of Mathematics and Mechanics, Moscow State University
Moscow, Russia

Abstract
Spatial patch is a new kind of rendering primitive that allows
convenient and compact representation of surfaces for real-life 3D
objects. In [1] and [2], several algorithms for z-buffer
visualization of spatial patches are presented. However, z-
buffering approach cannot provide photo-realistic quality of
rendering. On the contrary, such quality can be obtained by means
of ray tracing – a well-known method of realistic image synthesis.
Being quite distinct from most of traditional ray tracing
primitives, spatial patches possess different challenging features,
which can be efficiently exploited by the modification of this
technique. In order to exploit them, we propose to find parameters
of ray - surface intersection approximately, where precision of
operation is naturally defined by a size of a pixel. In case of
spatial patches, such an assumption gives significant speed-up and
possibility of rendering with optimal level of details.
In this paper, an efficient algorithm for ray-patch and ray-patched
scene intersections calculation is presented. The paper starts with
a method of representing spatial patches as hierarchies of
bounding boxes. Employing existing techniques, these hierarchies
can be linked into a single one that represents the whole scene.
Then, the calculation of ray-tree approximate intersection is
discussed. Experimental results, proving ray-tracing suitability of
spatial patches, are presented as well.
Keywords: Spatial Patch, Ray Tracing.

1. INTRODUCTION
1.1 What is Ray Tracing?
Creation of photo-realistic images of 3D environments is a
traditional application of computer graphics. Ray tracing is a
powerful, simple, and the most widely used technique of this field.
While more powerful approaches emerged in recent years, almost
all of them employ ray tracing.
Image synthesis in classical ray tracing is performed as follows. A
ray, starting in the observer eye and passing through the center of
the pixel on the screen plane, is shot. Its intersection with the
environment is found, determining an object visible through that
pixel. Thus, a primary ray is traced. Refracted and reflected rays
are shot from the point of intersection if the object is reflective or
transparent. In addition, tracing of shadow ray towards a light
source shows whether a given source lights a point or it is
occluded. Finally, initial color of the material, results of reflected
and refracted rays tracing, and lighting define pixel color.
Various ways of accelerating ray tracing have been invented for
decades. In this paper we utilize some of the proposed ideas.
One of the most attractive features of ray tracing is its
universality. Environments can consists of different objects such
as polygons, splines, voxel grids, explicitly and implicitly defined
surfaces etc. To make ray tracing on some sort of object possible,
a procedure of ray - object intersection should be presented. Of
course, this procedure ought to be as fast as possible, since the
speed is often desired.

Abundant information on ray tracing can be found in [9], while
this paper is dedicated to ray tracing on spatial patches.
1.2 What is Spatial Patch?
Spatial a patch is a new kind of rendering primitive. It can be
defined as a dense range image of a small part of a surface. More
formally, spatial patch (Figure 1) is defined by the origin point P,
orthogonal frame (Δx,Δy,Δz), and a rectangular m×n array of (c,d)i,j
pairs, each representing a point Ni,j=P+iΔx+jΔy+di,jΔz of color ci,j
on a surface (some color value denotes transparency). We call this
colored point a node. For each node Ni,j, a normal can be
estimated as a normalized cross product of Ni+1,j - Ni-1,j and Ni+1,j -
Ni-1,j vectors.
Surface can be regarded as a set of quadrangle cells {Qi,j}, each
having vertices in non-transparent points Ni,j, Ni+1,j, Ni+1,j+1, and
Ni,j+1. All cells adjacent to a transparent node are regarded fully
transparent.
Any 3D surface can be represented with the required level of
accuracy by a set of spatial patches. We also assume, that each
patch represents relatively small part of a surface.
 Further details on the concept of spatial patches can be found in
[1] or [2].
In the sequel, we make an additional assumption that m = n =
2k+1, where k is non-negative integer. Given spatial patch of
arbitrary m and n, it can be supplemented with transparent cells to
meet this assumption.
Below, the initial coordinate system is referred as world (though,
it is denoted as model in [1] and [2]). We will also operate with
patch coordinate system, defined by patch orthogonal frame (see
Figure 1).

Om

Xm

Ym

Zm

world
coordinate

system

Δx
Δy

Δz
P

patch’s
coordinate

system

object’s
surface

cell

node

Figure 1: Spatial Patch definition

To extend ray tracing to the newly defined primitive, solution for
typical ray - environment intersection problem should be found
(i.e. an algorithm for finding intersection of an arbitrary ray with
an arbitrary scene comprised of spatial patches should be
presented).
1.3 Ray Tracing on Spatial Patches
As it was mentioned above, one can consider the whole scene as a
set of quadrangle cells. By treating each cell as a pair of triangles
or as a bilinear quadrangle, the scene can be reduced to either a

Nizhny Novgorod, September 10 - September 15, 2001 49

triangle set or to a set of explicitly defined surfaces – traditional
environments for ray tracing. This straightforward algorithm has
serious drawback: it has to operate with a vast number of tiny
primitives, without exploiting their natural regularity.
In this paper we describe a technique of intersecting ray with a
hierarchy (tree) of nested axes-aligned boxes, whereas this
hierarchy has infinite depth and the intersection should be found
with some pixel size-based precision. This approach, in our
opinion, seems to be more natural and efficient for scenes
represented by spatial patches. Construction of this hierarchy for
3D scenes is described in Section 2, whereas the process of ray-
scene intersection is presented in Section 3. The paper concludes
with discussion of our practical results.

2. SCENE TREE
In this section a scene represented by spatial patches (a patched
scene) is considered. Basing on this scene an infinite-depth
hierarchy of nested boxes called scene tree is created. The
sequence of tree levels converges to the surfaces represented in a
scene.
2.1 Upper Layer
To construct the upper layer of the tree we employ Goldsmith-
Salmon [4] algorithm that allows construction of bounding
volume hierarchies optimized for ray tracing. Restricting volume
type to axes-aligned boxes, we obtain a tree of nested bounding
volumes, in which each leave is a bounding box of a single patch.
Hierarchies produced with Goldsmith-Salmon algorithm are
proved to exploit scene coherences efficiently; therefore, they are
often superior over conventional spatial subdivisions (octrees,
regular grids), BSP-trees, etc. Nevertheless, these standard
methods work with patched scenes efficiently, as well.
2.2 Patch tree
Obtained tree is finite and don’t converge to a scene surface.
Hence, each leaf, i.e. bounding box of a patch, should be replaced
with an infinite subtree representing a surface defined by that
patch. Let us call this subtree a patch tree. For this tree we use
either world system axes-aligned boxes (world-oriented patch
tree) or patch system axes-aligned boxes (patch-oriented patch
tree) – see Figure 2. To each box in a patch tree we attribute a
normal and a color, approximating mean color and normal
throughout the surface enclosed in the box.

World axes

Figure 2: Patch layer for world-oriented (left) and patch-oriented
(right) hierarchies, shown for 1D “patches” in 2D space.

2.2.1 Patch Layer
We recall, that we consider patches of (2k+1)×(2k+1) nodes in
size. The upper box in the patch layer is simply a bounding box of
all non-transparent nodes. After that, we subdivide our patch into
four adjacent subpatches of (2k-1+1)×(2k-1+1) in size, and store
their bounding boxes as children in a quadtree. Then this
procedure is recursively repeated for the children until the size of
3×3 is reached.

Boxes, containing only transparent nodes, are expelled. For
others, arithmetical mean of normals and colors for non-
transparent nodes inside is looked up.
2.2.2 Cellular Layer
The lowest level in the patch layer is the level of 3×3 subpatches.
In the next patch tree level bounding boxes for single cells are
situated. To obtain lower levels of patch tree surface interpolation
(subdivision), refining our patch, is required. In [1], [5], [7], and
[8] some existing approaches to subdivisions and mesh
interpolations are presented. Below we will distinguish nodes that
are precalculated directly from patch (primary nodes), and nodes
obtained during interpolation (secondary nodes). All calculations
for nodes are performed in the same coordinate system as for
boxes.
Below in the section we consider a node as a point in 9-
dimentional space (3 dimensions for point, 3 -for normal, 3 -for
color).
Consider an arbitrary cell. Denote its nodes by A, B, C, and D
(Figure 3). Two types of recursive subdivisions, namely bilinear
and smooth, may be used for interpolation. In both cases, on each
step of recursive subdivision middle points of cell edges (nodes K,
L, M, and N on Figure 3) and the central node (node O) are
interpolated. For bilinear subdivision interpolation is
straightforward:

.
4

,
2

,
2

,
2

,
2

DCBAO

ADNDCMCBLBAK

+++
=

+
=

+
=

+
=

+
=

Thus, four smaller cells (interpolated cells of first generation)
AKON, KBLO, OLCM, NOMD are obtained; their bounding boxes
(calculated as bounding boxes of four points of their nodes) form
the next level in the hierarchy. Each of these cells can be
subdivided in the same way, if necessary.
The surface obtained during bilinear interpolation of cell interiors
is not smooth on the cell edges, which, however, does not result in
visible artifacts, provided that cells are of not more than several
pixels size (the most often case). In the reminder cases, restoring a
smooth surface over a whole patch is more suitable.

A

B

C

D

K L

MN

O A

B

C

D

K L

MN

O

Figure 3: Recursive subdivision (left − bilinear, right − smooth)

In order to obtain such surface, we modified Kobbelt interpolatory
scheme [8] developing a method of smooth interpolation of cell
interior. In the case of smooth subdivision, we need to assign to
each node two tangent 9-tuples: dX and dY − black and white
arrows on the figure. For primary node Ni,j, dXi,j = (Ni+1,j - Ni-

1,j)/16 and dYi,j = (Ni+1,j - Ni-1,j)/16, for secondary node they are
interpolated.
Then, nodes are interpolated in the following way:

GraphiCon'2001 50

.
4

,
2

,
2

,
2

,
2

CBCBCB

BA

DACD

CBBA

dYdYdYdYdYdY

dXdXDCBAO

dYdYADNdXdXDCM

dYdYCBLdXdXBAK

−+−+−+

−+
+++

=

−+
+

=−+
+

=

−+
+

=−+
+

=

Now smaller cells are obtained. For A, B, C, and D tangents are
simply divided by two. For other nodes, tangent vectors are
interpolated as follows:

16/)(,16/)(
,16/)(,2/)(
,2/)(,16/)(

,16/)(,2/)(
,2/)(,16/)(

NLdYKMdX
ADdYdXdXdX

dYdYdYDCdX
BCdYdXdXdX

dYdYdYABdX

OO

NDAN

CDMM

LCBL

BAKK

−=−=
−=+=

+=−=
−=+=

+=−=

In case of smooth interpolation, there arise the problem of finding
a bounding box enclosing a surface within a cell. It can be solved
for patch-oriented hierarchy by expanding a bounding box of cell
nodes in z-direction by a value determined by tangent vectors.
Bounding boxes in patched and upper layers should be expanded
as well.
For each cell an average color and a normal are found as averages
of cell nodes colors and normals.

. . .

+color
+normal

Pa
tc

h
la

ye
r

C
el

lu
la

r l
ay

er (single cells)

. . .

+color
+normal

+color
+normal

+color+normal

Patch bbox Patch bbox Patch bboxPatch bboxPatch bbox

.

Scene bbox

U
pp

er
 la

ye
r

Figure 4: Scene Tree

In our implementation, all interpolated nodes are calculated on
demand and are not stored. However, some cache techniques may
be used. Furthermore, if before tracing some patch is known to be
low refined (in the sense that its nodes are likely to require deep
and frequent interpolations), all secondary nodes up to some
generation level can be interpolated, stored, and later treated as
primary ones. Still, this process is restricted by available amount
of memory.
Thus, a scene tree is constructed (Figure 4). Logically, it has
infinite depth, while, in practice, its lower levels in cellular layer
are calculated up to a certain depth.

3. RAY – ENVIRONMENT INTERSECTION
3.1 Notations and Definitions
Assume a ray with a starting point S, and a direction vector D (|D|
= 1). Let us attribute to it two additional values: an initial
threshold of details T0, and a non-negative threshold of details
increment ΔT. To each non-negative ray parameter t we assign a
point P(t) = S+D*t and threshold of details T(t) =T0+ΔT*t.
Threshold of details T(t) defines desired accuracy of operations
(intersections) in the neighborhood of point P(t). Thus, if P(t) ∈
screen_plane, T(t) should equal 0.5 × size_of_pixel.
An ordered pair [a, b], where 0 ≤ a ≤ b, define a line segment Δab
= [P(a), P(b)] on a ray. Such a segment is called a ray segment.
The segment threshold of details denotes the value T(a).
Let a ray segment Δcd be nested in a ray segment Δab, if a ≤ c ≤ d ≤
b.
3.2 Ray Segment - Box Intersection
Consider an arbitrary axes-aligned box B and an arbitrary ray
segment Δab.
There are two possibilities: either they don’t intersect or their
intersection is a ray segment Δcd that is nested in Δab. Well-known
Cohen-Sutherland algorithm [3], extended with calculation of ray
parameters of new points, is used here.
Assume a box and a segment intersect. If all dimensions of the
box xmax – xmin, ymax - ymin, zmax – zmin are less than segment
threshold of Δcd, then the box fits precision. Otherwise, the box
doesn’t fit precision.
Thus, possible relative positions are classified into three
categories: a box and a ray segment don’t intersect, a box and a
ray segment intersect and the box fits precision, a box and a ray
segment intersect and the box doesn’t fit precision.
3.3 Ray Segment – Scene Tree Intersection
Now, a problem of ray – environment intersection calculation is
substituted for ray segment – scene tree approximate intersection
problem calculation.
Intersection of a ray and a volume hierarchy is considered in a
number of works ([4], [5], [6]). In our case the following recursive
scheme is suitable:

Nizhny Novgorod, September 10 - September 15, 2001 51

IntersectionInfoStructure intersection;

bool Intersect(Ray Segment Δab,
 Scene Tree Node Node)
{
 Ray Segment Δcd = Δ ∩ Node.Box; ab
 if(Δ is empty) cd
 return false;
 if(N ∉ Upper Layer && ode

Node.Box.FitsPrecision(T(d)))
 {
 .Normal = e.Normal; intersection Nod
 .Color = Node Color; intersection .
 .Parameter = d; intersection
 intersection.Point = P(d);
 return false;
 }

 bool result = false;
 for(every children Child)
 {
 if(Intersect(Δcd, Child))
 {
 tersection.parameter; d = in
 result = true;
 }
 }
 return result;
}

Thus, the process will stop when tree node’ box fits the precision.
Hence, the less is desired precision the faster is intersection.
Below peculiarities of ray segment – tree node intersection for
boxes from different layers of the scene tree are observed.
3.4 Intersection with nodes of Patch Tree
There are a number of pre- and postprocessing operations required
for this layer in some cases.
First, if with patch-oriented hierarchies are used, a ray should be
converted to patch coordinates before intersecting with patch
layer.
Besides that, on a postprocessing stage the intersection’ normal
vector needs to be normalized, as a normalized vector is desired
for lightning and secondary rays shooting. In addition, in case of
patch-oriented hierarchy, the normal vector as well as an
intersection point should be converted back to world coordinates.
Still, all these operations are computationally expensive. When
consider an intersection of a ray segment with the whole scene,
one should perform them only for the ultimate intersection, not for
each intersected patch (there can exist several). In order to do that,
a pointer to the nearest intersected patch should be stored along
with other intersection parameters.

1
2

3
4

Figure 5: Optimized order of children traversal

One important optimization concerning the order of children
traversal can be implemented as well. Analyzing the ray direction
vector in patch coordinates, the optimal sequence of children

traversal can be found. Indeed, a ray segment with a child
possessing nearer box should be tested for intersection first and
those with those of farther boxes should be tested last, since
intersection with the latter is unnecessary if the former is
intersected (Figure 5). Note that, such a sequence is constant over
the whole patch tree.
3.5 Intersection with Upper Layer
Though a scene tree does not possess in the upper layer that
regularity as in patch and cellular levels, optimizations in child
traversal can be done. We implemented one of traditional
techniques. On a preprocessing stage, we sort children boxes by
their least coordinates of projections on six world semi-axes, thus
obtaining six lists. When shooting a new ray, we find which of
semi-axes lies closer to its direction vector, i.e. we find dominant
direction of the ray. Now, intersection with the children, if
performed in the sequence stored in respective list, may be
stopped when the dominant coordinate of the next box exceeds
that of current intersection.
3.6 Shooting ray segments

Screen

Eye
O

A

Figure 6: Primary ray

To generate a primary ray segment from the eye O to the pixel A
(see Figure 6), a ray tracer ought to create a ray, having its starting

point at O, its direction vector equal to OAOA / , its initial level

of details equal to zero, and its level of details increment equal to

maximum of pixel width and height divided by OA⋅2 . The

initial ray segment is [OA , OA +2*scene_radius].

initial ray

n

n

n

O

O
O

–

–

+

+
surface

ref
rac

ted
 ra

y

reflected ray

shadow ray

Figure 7: Secondary rays

To shoot a secondary ray, a normal at the point of intersection
should be looked up. Assume that in the process of ray segment –
scene tree intersection we get point O and a normal vector, which
equals to either n+ or n– (in notation of Figure 7). To distinguish,
is it n+ or n–, its dot product with the ray direction vector is
computed. This value is positive for n+ and negative for n–. Thus,

GraphiCon'2001 52

we determine, which of two vectors we deal with, calculating the
other.
Afterwards, reflected, refracted and shadow ray segments are
generated. Direction vectors are calculated as usually in ray
tracing. Initial thresholds of details are set to initial ray threshold
of details at point O, while threshold of details increments remain
the same. In order to avoid self-occlusions we can use O+ as a
starting point for refracted ray, and O– for shadow and reflected
rays. These points are obtained by a slight shift of point O along
n+ and n– respectively by a threshold of details at point O (see
Figure 7).
This scheme successfully solves self-occlusion problem.
However, when a ray is almost exactly tangent to surface and the
dot product of its vector with the normal vector is very close to
zero, n+ and n– can be confused, thus causing an artifact pixel.
Still, this effect is rare. Furthermore, it can be completely
eliminated, if we state that a patch represents only one side of the
surface (if necessary other side can be represented by another
patch). In this case we always treat a normal vector obtained from
intersection as n–. If its dot product with the direction vector is
positive then a patch is ignored (back face culling).
 To conclude this section, we would like to emphasize that above
a method of ray segment - patch tree intersection is given
implicitly, and, thus, the ray – primitive intersection problem is
solved. Therefore, a spatial patch becomes a full value ray tracing
primitive. The following section proves its suitability for ray
tracing.

4. PRACTICAL RESULTS
We have implemented a ray tracer based on the described above
algorithm, which is capable of creating images of arbitrary
patched scene. Since it was designed for testing and evaluation of
tracing features peculiar to this kind of scenes, we did not supply
it with all traditional acceleration techniques or techniques that
enhance photo-realism. At the same time, experiments prove
efficiency of our method in reducing of intersection to a sequence
of segment - box clippings.
The scene presented at Figure 8 consists of two teapots each made
of 2928 patches (patched model of the famous teapot was
obtained from the polygonal one using the method described in
[2]). Each patch has 17×17 node grid. Simple computations show
that conversion to triangles would lead to a large (∼3 million)
number of them.

Figure 8: Ray tracing example

We traced our scene at 1024×768 and 256×192 resolutions. Nodes
were interpolated bilinearly. The following table summarizes
results for cases of patch-oriented and world-oriented patch trees.
The second column presents total numbers of traced rays that
intersect at least upper box of the scene tree. The next column
gives average number of Cohen-Sutherland ray segment – box
clippings. The third column gives an average number of
interpolated boxes (i.e. calculated tree nodes in cellular layer).
The last column gives a time taken by tracing (preprocessing time
not included). Calculations were performed on a Pentium II - 450
MHz processor.

Resolution
and

orientation

Number
of rays

Clippings
per ray

Interpolated
boxes per

ray

Tracing
time
(sec)

1024×768
(patch) 1,412,036 22.2 5.2 140

256×192
(patch) 87,755 17.3 0.06 6

1024×768
(world) 1,410,639 26.0 10.8 182

256×192
(world) 87,540 18.7 1.6 8

5. CONCLUSION
In this paper we presented a complete method of photo-realistic
rendering of 3D scenes by means of ray tracing. In practice, it
appeared to work efficiently due to key properties of spatial
patches, such as small size and regular internal structure.
The use of hierarchy of nested boxes for spatial partitioning of
patch clusters provides fast selection of the candidate patches that
require further processing, i.e. calculation of the intersection
points if intersection occurs. Goldsmith-Salmon approach for
constructing of such hierarchy proved to yield a tree of boxes that
allow for very fast processing. In addition, we expect that other
known spatial partitioning strategies, including octrees, regular
grids, BSP, and others, would work as efficient as the
implemented technique.
The hierarchy of boxes within a patch seems to be quite natural
for the proposed primitive. It utilizes patch’s internal regularity
and, hence, requires little additional storage space. Construction of
this structure can be implemented efficiently, and, in fact, may be
executed on-the-fly if memory resources are critical.
It is important that the proposed strategy allows for any kind of
surface interpolation within a patch, including the least accurate
piecewise linear, bilinear or more smooth ones. The resulting
image can be obtained with any desired degree of accuracy;
commonly known techniques of super- and stochastic sampling
can be directly applied as well.
Thus, the representation of 3D models with spatial patches proved
to be efficient not only for rendering using z-buffer (which is
discussed in [1]), but also for photo-realistic rendering exploiting
ray-tracing ideology. This fact significantly widens area of
application of spatial patch technology, ensuring its compliance
with various needs of 3D graphics practitioners.

Nizhny Novgorod, September 10 - September 15, 2001 53

6. ACKNOWLEDGMENTS
This work was carried on by Computer Graphics Group at the
Mathematics Department of MSU under research agreement with
Intel Technologies, Inc. We thank Jim Hurley and Alex Reshetov
(Intel Technologies, Inc.) for their constant interest in this work.

7. REFERENCES
[1] D. Ivanov, Ye. Kuzmin. Spatial Patches – A Primitive for 3D
Model Representation, Proceedings of EuroGraphics’, 2001
[2] D. Ivanov, and Ye. Kuzmin. Representation of Real-life 3D
Models by Spatial Patches. In these proceedings, 2001.
[3] J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughs, "Cohen
Sutherland Method", Computer Principles and Practice, Addison
Wesley, Second Edition, 1990
[4] J. Goldsmith, J. Salmon, Automatic Creation of Object
Hierarchies for Ray Tracing, IEEE Computer Graphics and
Applications, 7:5, May 1987, pp. 14-20.
[5] S. Rubin, T. Whitted, A Three-Dimensional Representation for
Fast Rendering of Complex Scenes, ACM Computer Graphics
(Proc. Of SIGGRAPH’80), 14(3), July 1980, pp. 110-116.
[6] T. Kay, T. Kajiya, Ray Tracing Complex Scenes, ACM
Computer Graphics (Proc. Of SIGGRAPH’86), 20(4), Aug 1986,
pp. 269-278.
[7] E. Catmull, A Subdivision Algorithm for Computer Display of
Curved Surfaces, Ph. D. Dissertation, University of Utah, Dec
1974.
[8] L. Kobbelt. Interpolatory Subdivision on Open Quadrilateral
Nets with Arbitrary Topology. Computer Graphics Forum (Proc.
of Eurographics’96), 15, pp. 409-420.
[9] An Introduction to Ray Tracing, edited by Andrew S.
Glassner, Academic Press, New York, 1989.

About the authors
Victor S. Lempitsky, Student – Vitya@fit.com.ru
Dr. Denis V. Ivanov, Scientist – Denis@fit.com.ru
Dr. Yevgeniy P. Kuzmin, Senior Scientist – Yevgeniy@fit.com.ru

Computational Methods Lab.
Mathematics and Mechanics Dept.
Moscow State University,
Vorobyovy Gory, Moscow, Russia, 119899

GraphiCon'2001 54

mailto:Vitya@fit.com.ru
mailto:Denis@fit.com.ru
mailto:Yevgeniy@fit.com.ru

	1. INTRODUCTION
	1.1 What is Ray Tracing?
	1.2 What is Spatial Patch?
	1.3 Ray Tracing on Spatial Patches

	2. SCENE TREE
	2.1 Upper Layer
	2.2 Patch tree
	2.2.1 Patch Layer
	2.2.2 Cellular Layer

	3. RAY – ENVIRONMENT INTERSECTION
	3.1 Notations and Definitions
	3.2 Ray Segment - Box Intersection
	3.3 Ray Segment – Scene Tree Intersection
	3.4 Intersection with nodes of Patch Tree
	3.5 Intersection with Upper Layer
	3.6 Shooting ray segments

	4. PRACTICAL RESULTS
	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES

