
Fuzzy reflections rendering.

Anastassiya S. Kulikova
Kirill Dmitiriev

Moscow State University,
Faculty of Computational Mathematics

Moscow, Russia

Abstract
The method proposed in the article adds the possibility of
rendering fuzzy reflections to the existing ray tracing systems.
It is based on the idea of special blurring . Depending on the
roughness of the reflecting surface, the diffuse component is
blurred. Even such special filtering does not require much time,
besides it can be optimized to concrete processor architecture.
Even realization of the method in C++ (without any assembler
code) resulted only in 2 % decrease in speed of the ray tracer.
Keywords: Ray Tracing, Fuzzy reflections, Rendering..

1. INTRODUCTION
Due to lack of literature on this subject I will mention only draft
versions of fuzzy reflection implementation. There have been
several approaches to rendering fuzzy reflections. The first
algorithm perturbs the local normal at surface point where
backward ray hit it (in fact, in every screen pixel). Second
approach is to trace multiple rays inside of a cone, constructed
around the direction of ideal specular reflection, and then
calculate average. The latter approach is very slow because too
many rays from every point are traced. The first approach is
relatively fast, but it is not qualitative because it results in
grainy look of surface.

2. METHOD DESCRIPTION
The approach suggested also treats the surface as a set of
random micro-facets, assuming that their size is much less than
pixel size, thus no granularity is visible. Under some conditions
this approach is physically accurate (it depends on the
reflecting properties of materials); in other cases it is expected
to give a good approximation sufficient for a photo-realistic
appearance.
This method is implemented via two-pass rendering. The 1st
pass is the usual backward ray tracing assuming specular
reflection. This pass is used to fill in image buffer where all
pixel contains:

1. Physical luminance L0 calculated for perfect specular
reflection (because only “specular” component will be
subsequently blurred).

2. 3D coordinates of intersection point a in the glossy
surface

3. 3D coordinates of the “end of ray” b, that is the point
in the scene which we would see reflected in the pixel
where the reflecting surface ideally specular.

In case of the so-called “subsampling” mode, when some pixels
are not traced but interpolated, we calculate all the above values
with bi-linear interpolation.

In the second pass, the above image is “filtered”, that is, for
those pixels whose intersection point belongs to the glossy
surface,

∑

∑

′′

′′

′′

′′′′

=

xy

xy

yyxxf

yyxxfyxL

yxL

,

,
0

),,,(

),,,(),(

),(

where L0(x,y) is the luminance of the original image at pixel
(x,y), and L(x,y) is the resulting luminance which represents
fuzzy reflections. Here f(x, xt, y, yt) are weight coefficients
depending on the material properties and on the ϑ angle. As in
our renderer the reflective properties of material were
characterized by the shininess and shin strength, the following
formula were suggested

f = 2 * ShinStrength * pow (cos (ϑ), Shininess) (2)
In renderers where specular characteristics of material are
determined by Phong coefficient (glossiness), the following
formula is suggested

f = pow (cos (ϑ), p) (3)

Where p is Phong coefficient and ϑ(x,x′,y,y′) is the angle
between direction from intersection point to the end of “its” ray
(=specular ray) and ray fired from this point to the end of ray
for neighbour pixel (x′,y′):

ϑ
camera

a(x,y)

a(x′,y′)

b(x′,y′)

b(x,y)

Figure 1: The thick green line is glossy reflector; thick blue
line is the object reflected in it; blue arrows show local normals
and solid black arrows show specularly reflected rays which
were traced in the 1st pass; the dashed arrow is the ray
representing fuzzy reflections and ϑ is the angle between it and
specular direction.

Nizhny Novgorod, September 10 - September 15, 2001 35

From the Figure 1 one can calculate that

()
),(),(),(),(

),(),(),,(),(),,,(cos
yxyxyxyx

yxyxyxyxyyxx
abab

abab
−′′⋅−′′

−−′′
=′′ϑ

 (3)
We assume that the reflecting surface is glossy, so that

nearly all reflected energy contains in cone ϑ ≤ Θ < 10°. In this
case contribution of far pixels is negligible, and we can confine
the sum in (1) to the neighbourhood of pixel (x, y). The latter
comprises pixels (x′, y′) such that the rays fired to them from
camera deviate from ray fired to the central pixel (x, y) be angle
less than

 α = Θ/(1 + s/r) (4)
where s is the distance from camera to intersection point on
glossy surface (point a) and r is the distance from the latter to
the end of ray (point b). From the angular size we can easily
estimate the radius in pixels:

ρ = α×(image size)/(view angle) (5)
Thus, we obtain the following formula for determining the
blurred color

∑

∑

<−′<−′

<−′<−′

′′

′′′′

=

dxxdyy

dxxdyy

yyxxf

yyxxfyxL

yxL

||,||

||,||
0

),,,(

),,,(),(

),((1’)

(or equally we can use round instead of rectangular area)

 The filter function is evaluated at the centres of
pixels. It would be better to evaluate f(x,x′,y,y′) as average over
pixel, but that is too expensive.

3. BASIC OPTIMIZATIONS
When realized as described above the algorithm considerably
decreases rendering speed. The following optimizations were
made . They do not lead to drawbacks in quality, but allow for
fast rendering.
The filtering (1) may be expensive in case of large filter size.
The following means can be used to accelerate that:
a) Force restriction on the filter size
b) Adaptive interpolation is possible. We can “blur” the

image ignoring antialiasing. While blurring we do not split
pixel in subpixels.

c) The weight coefficients can be tablulated on a regular
mesh. It is done on the first pass of renderer. Then the
calculation of arccos is obviated, as well as e.g. raising to
power γ in Phong model.

d) While testing the preliminary implementation it was
observed that the coefficients calculated in the above-
mentioned way are similar to Gauss kernel. Therefore it is
possible to use Gauss convolution. The subtle differences
in images are usually not seen by pure eye.

e) The filter size can be calculated at each fourth pixel,
because it is reasonable to assume that the angles does not
change considerably between adjacent pixels. The
procedure for calculating filter size can also be simplified.

3.1 RESULTS

Figure 2: Sample scene, no fuzzy reflections

Figure 3: Sample scene, surface roughness 50%.

Figure 4: Sample scene, surface roughness 100%.

4. CONCLUSION
The advantages of the method are its speed, physical accuracy.
The algorithm can be added to any renderer as a second pass.
The following limitations are inherent in the method.
Reflections after reflection by the first encountered glossy
surface are not handled. That is the method can not accurate
handle the case when e.g. glossy surface reflects ideal mirror
which in turn reflects something. This is because the method

GraphiCon'2001 36

assumes that rays form intersection point till ray end are
straight lines.
Similarly, if one fuzzy object is reflected in other fuzzy object,
the fuzziness of furthest object (first one) will be ignored. This
assumption looks reasonable since fuzziness of primary
reflection should hide sharpness of secondary one any way.

About the author
Anastassiya S. Koulikova is the student of Computational
Mathematics Faculty.
E-mail sergevna@mailru.com

Kirill Dmitriev
kadmitr@gin.keldysh.ru

Nizhny Novgorod, September 10 - September 15, 2001 37

mailto:kadmitr@gin.keldysh.ru

	1. INTRODUCTION
	2. METHOD DESCRIPTION
	3. BASIC OPTIMIZATIONS
	3.1 RESULTS

	4. CONCLUSION

