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IntroductionIntroduction
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MotivationMotivation
• Triangle meshes are the most popular

(drawing) primitives in Computer Graphics

Hardware support for rendering 

Triangles are the basic elements for piecewise

linear interpolation

Triangles are basic elements for mesh generation

• Triangle meshes are large
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Data sourcesData sources

Laser digitizing
Digital terrain modeling 
Tessellation of CAD models
Isosurface generation
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Application areasApplication areas

• Computer Graphics - real time rendering,
animation, transmission

• Scientific visualization - clean up of marching
cubes isosurfaces

• Computer Vision - acquired range data (noisy),  
model fitting

• Computer Aided Design - tessellations of curves
surface models
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Large meshesLarge meshes

Large meshes mean:
•  Large memory requirements 
•  Slower rendering
•  Slower transmission
•  Slower computation - more expensive analysis
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Problems and solutionProblems and solution

Problems:  
• Storage
• Rendering
• Transmission over the network 
• Analysis (e.g. Finite Element 

computations)

Solution:
• Mesh simplification
• Multiresolution representations of meshes
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PreliminariesPreliminaries
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PreliminariesPreliminaries

• Parametric surfaces

• Scalar fields (e.g. terrain) 

• Simplicial meshes 

• Manifold triangulations

• Data structures for polygonal and triangle

meshes
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Parametric surfacesParametric surfaces

A parametric patch ϕ(Ω) is the image of 
continuous function  ϕ:Ω→R3, 
where Ω is a compact domain in R2 .
R3 −physical space;
R2 −parametric space;
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Parametric surfacesParametric surfaces

The boundary of domain Ω, ∂Ω, is formed by a finite 
set of closed curves, called trimming curves.
A parametric surface is a collection of parametric 
patches P = {ϕ1(Ω1) , ϕ2 ( Ω2) ,… ϕk ( Ωk ) },such that 
for each pair of patches ϕi (Ωi ) , ϕj (Ωj ) , i≠j, : 
ϕi (Ωi ) ∩ ϕj (Ωj ) = ∂ϕi (Ωi ) ∩ ∂ϕj (Ωj )
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Scalar fieldsScalar fields

A scalar field is a continuous function ϕ:Ω→R, where 
Ω is a compact domain in Rk , k ≥ 1
The image of ϕ embedded in Rk+1 space, i.e., 
F = {(X, ϕ(X))⏐X ∈ Ω} ⊂Rk+1 is called a hypersurface.
For k=2 F is called an explicit surface, (also terms: non-
parametric surface, height field, 21/2 D-surface, 
topographic surface)
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Simplices
A d-simplex S is the convex combination of d+1
linearly independent points. d is called dimension of 
the simplex.

The boundary dS of a simplex consists of all 
(d-k)-simplices contained in S (k>0). 
The simplexes in the boundary of S are called faces.

0 – simplex           2 – simplex                   3 – simplex 

1-simplex
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Simplicial MeshSimplicial Mesh
A finite set T of simplices in Rn is a simplicial mesh

when the following conditions hold:
• For each simplex t∈T all faces of t belong to T;
• For each pair of simplexes t0 ,t1 ∈T, either t0 ∩ t1=∅

or t0 ∩ t1 is a simplex of T;
• Each simplex t is a face of some simplex t‘ (possibly 

t ≡ t‘) having maximum order among all simplices of 
T.

Triangulation -
2-simplicial mesh embedded
in either R2 ,or R3
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Manifold surfacesManifold surfaces
Manifold surface (2-manifold) S: subset of Rk , for 
some k ≥ 3, such that each point of S has an open neighborhood 
homeomorphic to the open disc in R2

A 2-manifold with boundary is homeomorphic
to a simplicial complex C of dimension 2 satisfying the following 
conditions:

Every 1-simplex in C is manifold: incident to one or two
2-simplexes.
For every 0-simplex v in C:

v.star - does not contain non-manifold 1-simplexes
Set of v.star 0-simplexes

is connected

Definition: Let S be a simplex in a simplicial 
complex C. Star(S) is the set of simplexes 
of which S is face.
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Manifold TriangulationsManifold Triangulations
Euler relations:

Let v, e, f be the number of vertices,
edges and faces of 2-manifold mesh

For mesh isomorphic to a sphere (genus one):
v-e+f = 2       → e ≈ 3v   and    f ≈ 2v 

For mesh with boundary:
e = 3(v-1) – b
t = 2(n-1) – b

b – number vertices on border
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Data structuresData structures
Geometry (location of the vertices in 3D-space)
Connectivity (triangles, adjacency relations between

triangles)
Vertex list: vi = (xi, yi, zi)
v1, v2 , v3, v4, v5, v6, v7 , v8 , v9 , v10

Triangle list:
(1, 2, 10), (2,3,10), (3,4,10)(4,5,10),
(5,6,10), (6,7,10),(7,1,10), (1,8,2),
(2,9,3)

+ each vertex is stored only once
- no direct adjacency relations are stored
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22--manifold data structuresmanifold data structures
Data structure for triangulation 
coding usually contains: 
• list of main objects (one  or few 
from the set V, E, F ) 
• some set of mutual adjacency 
relations.

winged-edge data 
structure

DCEL

e

sym e

next e

prev e

v1

v2

Face 1

Face 2
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22--manifold data structuresmanifold data structures
Face based
Triangle list:
(1,2,10),(2,3,10),(3,4,10)(4,5,10),
(5,6,10), (6,7,10),(7,1,10),(1,8,2),
(2,9,3)
Neighborhood list:
(2, 7, 8),  ( 3,1,9),  (4,2,-1), 
(5,3,-1),  (6,4,-1),  (7,5,-1),
(1,6,-1),  (-1,1,-1), (-1,2,-1)

+ adds adjacency relations to standard
format

+ supports breath first traversal of the
mesh

- no direct access to the neighborhood of 
a vertex

- relatively high storage requirements

Face 1
1

2 3

4

5
6

7

8

9



International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/ 21

22--manifold data structuresmanifold data structures
Vertex based
v10: (1,2,3,4,5,6,7)
v1 : (~8,2,10,7)
v2 : (~9,3,10,1,8)
v3 : (~4,10,2,9)
v4 : (~5,10,3)
v5 : (~6,10,4)
v6 : (~7,10,5)
v7 : (~1,10,6)
v8 : (~2,1)
v9 : (~3,2)

+ the neighborhood of a vertex is
accessible constant time

+ the boundary of a mesh with only
one border can be extracted in time
linear to the output size

+ storage efficient
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Error metricsError metrics
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Error on manifold surfacesError on manifold surfaces
S – input manifold surface
T – approximating simplicial mesh for S
E(T,S) – error function

a. Let S is known at every point and function  f : S →T
is defined, then we can define a difference function 
δT  : S →R as   δT (X) = ⎜X – f(X) ⎜ and

E(T,S) = ⎟⎥ δT ⎟⎥S
where ⎟⎥ . ⎟⎥S – some norm on functions defined 

over S – e.g., L2 norm or L∞ norm
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Error on manifold surfacesError on manifold surfaces
b.  Let S is known only at a finite set of sample points D 

and for each triangle t∈T subset Dt of T is known 
( Dt is approximated by t), then for each point X ∈ D 
we can define the difference δT (X) as the Euclidean 

distance between X and the triangle t related to it 
E(T,S) = ⎟⎥ δT ⎟⎥D

where ⎟⎥ . ⎟⎥D – discrete norm –
e.g., the mean square or 
the maximum of differences over data
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Error on manifold surfacesError on manifold surfaces
c. No direct correspondence between a point of S and 

its representative in T is known. Some combination 
of Hausdorff distance and usual norms can be 
adopted. 
For instance, we can define

δT  (X) = min⎟ X, Y ⎟ , X ∈ S
Y∈T 

δS (Y) = min⎟ X, Y ⎟ , Y ∈ T
X∈S

E(T,S) = ⊕(⎟⎥ δT ⎟⎥S , ⎟⎥ δS⎟⎥T

where ⊕ can be: an average, or a max, or a min, 
or a projection operator
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Error on parametric surfacesError on parametric surfaces
In parametric space, domain Ω and trimmed curves of

∂Ω of each patch are approximated with Ω~  and 
∂Ω~  (polygonal)

Ω~  is triangulated and each t ∈T~ is projected into 
physical space  through a function to obtain mesh 
T approximating S

ρ~
Ω → Ω~ 

ϕ ↓ ↓ ϕ~ 

ρ
S      → T
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Error on scalar fieldsError on scalar fields

Domain Ω is approximated through a poligonal Ω~  

where a triangulation T~ is defined
Approximating mesh T is defined by the image of 

piecewise linear function ϕ~  : Ω~ → R
An error function  – analogous to that of parametric surfaces 
If surface F is known only on a finite set of samples D, 
Ω ≡ Ω~ , therefore  e(X) = ⎜ ϕ(X) – ϕ~ (X) ⎜ and

E(T,F) = ⎟⎥ e(X) ⎟⎥D
where ⎟⎥ . ⎟⎥D – discrete norm – e.g. the mean square 

error or the maximum error at all data points
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Surface simplificationSurface simplification
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Simplification GoalsSimplification Goals
• Treat large meshes (> 1000 M triangles)

• High processing rates (O(n) time complexity)

• Controlled approximation of the original model :

approximation error less than a  predefined error 

tolerance e in 3D  

• Form „good“ approximations to original mesh:

visual, geometric, data-dependent; 

preservation of details
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Simplification goals (cont .)Simplification goals (cont .)

• Mapping of the original vertices to the 

reduced triangulation (e.g. for texture) 

• Equiangularity of the reduced triangulations

• Several levels of detail (LOD)

• Smooth transition between different levels 

• Simple hierarchies of different LOD 

• Merging of different LODs
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Simplification goals (cont .)Simplification goals (cont .)

• Conform triangulations
• Immune against the following anomalies 

(in tessellated 2-manifold models)
- Degenerate triangles
- Duplicate triangles
- Degenerate edges
- Inconsistent edges
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Surface mesh simplificationSurface mesh simplification

Optimal simplification strategy? 

Refinement strategies
• Hierarchical triangulations 
• Delaunay pyramid 

Decimation methods
• Vertex, edge, face decimation
• Clustering methods
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Approximation of parametric Approximation of parametric 
surfaces using hierarchicalsurfaces using hierarchical

subdivisonsubdivison

Outline: Construct 
approximating mesh by 
recursively
subdividing a surface.
Examples: Quadtrees, kD-
trees…
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Restricted Restricted quadtreesquadtrees (von Herzen, Barr 1987)

Restricted quadtree: adjacent leaves are allowed to 
differ for no more than one level 
Each quadrant is triangulated according to predefined 
patterns:
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Summary (Quadtrees)Summary (Quadtrees)

+ Canonical strategy for the refinement 
+ Simple measurement of approximation error
+ Suitable structure for FE-computations
+ Very compact data structure, no need to encode 

information on connectivity, dependencies, etc.
+ Very fast to traverse
+ Easy to extend for the decimation approach
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Summary (Quadtrees , cont)Summary (Quadtrees , cont)

- data must be distributed on a regular grid
- patches must have rectangular or triangular domain
- difficult to handle trimming curves
- difficult to extend to nonparametric surfaces
- features in the data set not aligned to the regular
grid cannot be represented well
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Refinement algorithmsRefinement algorithms
Given: parameterized surface or scalar field (over rectangular

or triangular domain)

General outline of refinement algorithms:

Mor : original mesh (mostly defined by surface points)
max_error :  allowed approximation error between original and simplified mesh

M0 : initial Mesh (rectangle, two triangles)

M:= M0

e:= ||M - Mor ||
While ( e > max_error)

Insert one or more points into the triangulation M
e:= ||M - Mor ||
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Refinement algorithmsRefinement algorithms

What vertex is inserted on current step?
Solution :
Insert recursively that vertex into the domain 
triangulation that causes the highest error until the 
L∞ error between original Mor and simplified M
triangulation is less than a predefined threshold 
max_error.
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The Delaunay PyramidThe Delaunay Pyramid
How to insert a new vertex into the current triangulation?

Solution: Use a Delaunay 
triangulation in the domain
A triangulation of a point set P ⊂ R2 is 
called Delaunay triangulation, if in the 
inner of the circumcircle of  each triangle 
there is no point p ∈ P.
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Delaunay Pyramid              Delaunay Pyramid              R.Klein, 1997

Advantages of the Delaunay triangulation:
• The location of the inserted vertices may be arbitrary.
• Delaunay triangulation maximizes the minimal angle in

the triangulation ⇒ good aspect ratios of triangles.
• The Delaunay triangulation of a point set is unique.
• Connectivity is implicitly given. Only a sequence of

vertices in the domain must be stored. Vertices on the
triangulation of the surface can either be computed by 
evaluating the parametric function or the z-values of the
vertices are stored.

• Insertion and removal algorithms allow to change between
different levels of detail.  
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Fast insertion algorithm     Fast insertion algorithm     M. Garland, P. Heckbert, 1997

Problems: 
• Find the vertex causing the

maximum approximation error
• Find the triangle containing the

new point p to be inserted

Naïve Algorithm:        Optimized algorithm:    
Selection         – O(n) – O(log i)
Insertion          – O(i) – O(i)
Recalculation  – O(ni)                     – O(ni)
Worst case – O(m2 n)                 – O(mn)
Average          – O(mn) – O((m+n)log m)

p p
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Summary (Summary (DelaunayDelaunay Pyramid)Pyramid)
+  Extremely compact model for parametric and 
manifold surfaces
+  Storing the simplest mesh plus the sorted vertices 
inserted during refinement tagged with the 
approximation error of the triangles incident to the 
vertices delivers a finite set of different LOD with 
controlled approximation error.
+  Easy incorporation of borders, feature points, 
edges, etc.

R. Klein, W. Strasser, 1998
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Simplification of not necessarilySimplification of not necessarily
parameterized surfacesparameterized surfaces

In many cases no common 
parameterization of the surface is 
known.
There are even surfaces for that a 
common parameterization do not
exist 
Need for simplification strategies that 
are not based on a parameterization 
of the surface!

Schroeder et. al. 1992:
Decimation of triangle meshes
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Vertex decimationVertex decimation

Simplification by successively removing vertices:

Evaluate local                    Delete vertex and  Retriangulate
topology and geometry      incident triangles              remaining hole
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Vertex decimation        Vertex decimation        Schroeder et. al. 1992, 1997

Evaluation of the local topology
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Vertex decimationVertex decimation

Different retriangulation strategies:
• Constrained Delaunay
• Data dependent (find triangulation 

that approximates the geometry in the
neighborhood of the removed vertex best.) 
For a fast implementation edge swapping
can be used. 

Retriangulation of the 
hole in a suitable plane

Example from Puppo, Scopigno, 1997
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Vertex decimationVertex decimation
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Edge CollapseEdge Collapse (Gueziec95, Hoppe96, Ronfrard-Rossignac96)

Sufficient for simplification
Simple collapse operation
Simple inverse split operation
Position of new vertex can be
optimized

Collapsing to one of the original
vertices is called half egde
collapse
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Vertex decimation or half edge collapse?Vertex decimation or half edge collapse?

Half edge collapse can be interpreted as special kind of vertex 
removal

For some applications vertex removal is superior to edge collapse, especially if there are 
requirements on the quality of the triangulation
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Triangle CollapseTriangle Collapse (Hamman, 1994)

Can be realized as two successive edge 
collapse operations

New vertex position can be optimized
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Decimation algorithmsDecimation algorithms

In which order should vertices, edges or triangles 
be removed or collapsed?

Schroeder et. al.: No special order, traverse vertex 
list several time and check which vertices can be 
removed

Idea (Douglas- Peucker): Build priority queue of 
vertices sorted by the approximation error
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Decimation algorithm outlineDecimation algorithm outline

Simplification
Until error high or approximation small enough

• Find vertex, edge or triangle that introduce the
least error

• Perform local simplification operation
• Update priority queue
• Save sequence of simplification operations and

their inverse



International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/ 53

Topology modifying algorithmsTopology modifying algorithms

Popovic, Hoppe,
Siggraph 97
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Topology modifying algorithmsTopology modifying algorithms
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Vertex Clustering  Vertex Clustering  Borel, Rossignac 1993

Error bounded in a Hausdorff sense 
Simple to implement
Very fast
Not topology preserving
Bad geometric accuracy of the original mesh
Produces very crude approximation
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Multiresolution modelingMultiresolution modeling

Multiresolution model is a model that 
can provide different representations, 

depending on the level of detail required.
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Discrete multiresolution modelDiscrete multiresolution model
Discrete multiresolution model consist of a set of increasingly 
simpler approximations ( set of discrete LODs)
and the threshold parameters to control the switching between 
them.

! We unable to vary the level of detail over different 
parts of the model
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Selective refinementSelective refinement
All schemes based on a local simplification 

operation naturally defines a linear sequence 
of LOD approximations

For real-time applications view-dependent
refinement is required:

View-dependent visualization of large objects
with guaranteed screen space geometric error

View-frustum culling
Surface orientation (back-facing parts as coarse

as possible)
Illumination based refinement



International Conference Graphicon 2001, Nizhny Novgorod, Russia, http://www.graphicon.ru/ 59

Continuous Multiresolution modelContinuous Multiresolution model
Desirable properties:
Continuity through domain (can't be cracks 

due to abrupt transition between different LODs)
Efficiency – (must support efficient – short time -

query processing)
Optimal size (model size mustn’t be 

considerably higher than the size of the mesh at 
the higher resolution)

Continuity across resolution (abrupt changes
should be avoided in changing a representation 
into another at a close LOD)
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The multi The multi -- triangulationtriangulation (Puppo 1996)(Puppo 1996)

The multi triangulation (MT) is a general framework
for multiresolution meshes

All multiresolution meshes described in the literature
can be interpreted as special cases of the MT

MT can be obtained as the evolution of a mesh through
iterative local modifications

Hierarchy of meshes forms directed acyclic graph
(DAG) of fragments

Local modification (or local update)  - operation that replaces group
of triangles with another group of triangles covering the same area
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The multi The multi -- triangulationtriangulation
T1

T2

T3

T4

T5

T6

T7

from Puppo, Scopigno, 1997
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Data structure of the MTData structure of the MT

Node T3

ceiling

floor

structure Arc
Upper node index
Lower node index
First triangle index
Last triangle index
Next arc index (the same

dest. Node)
structure Node
First outgoing arc;
Last outgoing arc;
First entering arc index
Last entering arc index
Number entering arcs

structure MT
Vertex array;
Triangle array;
Arc array;
Node array;

structure Triangle
Vertex Index [3];
Triangle error
Arc index;
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The multi The multi -- triangulation (cont.)triangulation (cont.)

• Can easily be extended to two manifold surfaces
embedded in 3D 

• Independent of the different local simplification
strategies (vertex removal, edge- and triangle
collapse) 

• Fast algorithms to refine and coarsen in distinct
areas

• High storage costs
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Extraction variable resolution meshes Extraction variable resolution meshes 
from MTfrom MT

Boolean predicate C on the triangles : 
For a given triangle t, C(t) is true if and if the 
resolution of t is acceptable. 
Given a MT M and a resolution predicate C it is possible to extract a
triangulation satisfying C in linear time in the size of M.

For flight simulators:
C(t) = (εt ≤ minp∈t τ(p)),
where εt  - triangle error;
τ(p) = K*dist(p,v);
v – view point
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Examples of extracted modelsExamples of extracted models

From L.Floriani, P. Magillo “Efficient Implementation of Multi-Triangulation”, 1998
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View dependent approximationView dependent approximation

triangles

(front view)(front view)

←
Front view
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