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Abstract

A method of extracting primitives from textures of the par-
ticular kind is considered. The extracted primitives are as-
sociated with ”spheres” of a fixed diameter in different non-
Archimedean norms of Q2. The obtained primitive textures
are invariant under certain p-adic isometries, they form a
representative set of features for solving particular tasks of
texture analysis.

Keywords: Tezture, Primitive extraction, p-adic num-
bers.

1 INTRODUCTION

It is stated in contemporary papers that almost all effective
methods of texture classification or segmentation are based
either on statistical or structural approaches [1]. Statistical
methods, such as using co-occurrence matrices and autore-
gression models, describe texture by using statistics obtained
from local image features (e.g. [2], [3]). Generally speaking,
such methods are suitable for processing irregular textures
with random distribution of brightness function of picture
elements. A specific lack of the direct statistical approach
is disregarding structural (or geometrical) image properties,
which is inherent to a wide range of textures.

Structural methods assume that texture is a set of peri-
odical fragments. It is claimed in papers [1], [4], [5] that a
wide class of textures has a concealed periodical ”quasilin-
ear” structure with unknown parameters of the periodicity.
On the other hand, some metrically invariant objects on the
discrete plane have visually the same ” quasilinear” structure.

The authors do not intend to discuss advantages and dis-
advantages of alternative approaches to solving particular
tasks of texture analysis. We shall note that these geomet-
ric (metric ones included) characteristics of an image do not
have to be described adequately in terms of conventional
Euclidean geometry. Moreover, while solving pattern recog-
nition and computer vision tasks, it may turn out that the
most informative features can be obtained from the analy-
sis of metric image properties which cannot be interpreted
clearly in terms of ”ordinary” concepts of distance, close-
ness, etc. (see [6]). Therefore, first of all, the purpose of this
paper is to illustrate the possibilities of mathematical tech-
niques relatively new for the Computer Science - the theory
of non-Archimedean (p—adic) normalized spaces (e.g. [7],
[8]), - in tasks of forming the features space. Textures are a
convenient testing ground for demonstration of such possi-
bilities.

With respect to the statistical and structural approaches
mentioned above, the method suggested in this paper is con-
sidered to be intermediate. On the one hand, the proposed
algorithm of extracting primitives is purposed to reveal ” hid-
den” quasi-periodic components of a texture image. On the
other hand, we use ”stochastic” (or "random”) properties of
some functions and objects associated with prime numbers

in conjunction with spectral methods. The latter is common
for the statistical approach.

In concept, the principal ideas of the method being de-
scribed are not absolutely new. Formation of features on
the base of different algebraic image invariants is one of the
main techniques in pattern recognition [9]. Different metric
structures associated with textures of particular classes has
been a subject in paper [10], etc.

In the papers [11], [12] the authors proposed the method of
extracting components associated with specific plane metrics
(the so-called non-Archimedean or p-adic metrics). From
here on we shall call this method a method of p-adic reso-
nance. The novelty of the approach of this paper is apply-
ing non-Archimedean (p-adic) norms - and their extensions
onto the discrete plane - to extacting metric invariants of
textures. As shown below, these invariants are some binary
images (primitives) associated with some set of primes and
also metrics connected with them. These primitives can be
used directly for recognition by experts or forming numer-
ical characteristics and, consequently, features space. The
possibility is at the basis of the method that one can (in a
parallel way) extract one or several components from a tex-
ture image, each of them has geometric properties which can
be easily distinguished visually or analysed numerically.

In this paper we continue their work on developing com-
bined geometric and statistical methods of texture analysis.
In particular, we describe examples of practical applications
of this method to solving some tasks of texture analysis, i.e.
segmentation and detection of texture defects.

2 JUSTIFICATION OF THE METHOD

2.1 Some Properties of Non-Archimedean Metrics

It is well-known that prime numbers form the multiplicative
basis of the natural numbers semigroup: each natural num-
ber can be presented as a product of degrees of prime num-
bers. On the other hand, the tasks concerned with analysis
of additive properties of primes (e.g. their distribution in the
positive integers) are quite difficult (e.g. see [13], [14]). It
is clear: additive properties of the multiplicative objects are
hard to analyze. ”Irregular behavior” of primes leads to the
idea about some ”independence” of the features associated
with different primes. ”The prime numbers play games of
chance” wrote Kac [15]. Some approaches to formalization
of the naive understanding of prime numbers independence
are described in this book with argumentation convincing
enough.

First of all, in texture analysis tasks the researcher is in-
terested in geometric properties of an image. Therefore we
shall consider image properties in specific geometries associ-
ated with prime numbers.

Let p be a prime. Let us assume vp(a) to be the p-adic
exponent of an integer number a, that is the largest nonneg-
ative number m for which
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a =0 (mod p™).

For a rational number = £ the exponent vy,(x) is as-
sumed to be

vp(z) = vp(a) — vp(b).

Let us define a p-adic (non-Archimedean) norm on the set
of rational numbers by means of the relation

—vp(x) . .

_)dp®, i #E G
lall» = { oy T W
Similarly to the fact that the completion of the field Q
with respect to the usual norm ||z||ec =| z | leads to the

forming of real numbers field, its completion with respect to
the norm ||z||, leads to the forming of p-adic numbers field
Qp. In a standard way, a metric pp(x,y) is induced by the
norm:
po(z,y) =z —yllp, =,y € Qp.

In particular, two integers are ”close” if their difference is
divided by a high degree of the given prime p.

Similarly to the fact that the norm || - ||c can be supple-
mented onto Q2, the norm || - ||, can be also supplemented
onto Q? in a number of ways.

Proposition 1 Let 6 be an integer free of squares. Let
z=(z,9) € Q% v=1,..,p— 1, then the functions

¥ (z) = Vp @0 = 2 — 52, (2)

TP (z) = p* ) — ||z 4yl (3)

extend norm || - ||p from Q onto Q2.

Remark 1 The norms \Iléj )(z) are conmected directly with
p-adic valuations on quadratic fields

Q(\/g)z{z:x—ﬁ—y\/g; z,y € Q}:

let & be an integer free of squares, p be a prime, z = T+yV/5.
Then:

e if 6 is a quadratic non-residue (mod p), then the func-
tion

p5(z) = Vo = e = 620
extends valuation (1) from Q onto Q(+v/8);

e if § is a quadratic residue (mod p) and -y is a solution of
the equation w? = § in the field Q,, then the functions

+ —vp(zt
Oy (2) =p Y = |z £y,

extend valuation (1) from Q onto Q(v/§) (see [7], Vol.
1, Ch. X.).

Proposition 2 Linear operators A: Q? — Q? with the fol-
lowing matrices:

a b
<pC aﬁpd>7 l/p(CL)IO7

preserve the norms (2) and (8), that is, A are linear isomet-
ric operators.

a,be,deZ; (4)

The form of the operators considered in Proposition 2 does
not depend on non-residue § and integer . It is defined by
five integer coefficients {p;a, b, ¢, d} of the A matrix only.

2.2 Primitive Textures and Some of Their Proper-
ties

Let a real-valued non-negative function z(ni,n2) = z(n) is
defined on the set

Q={n=(ni,n2):0<n,ne < N-1} C Z2

and extended N-periodically onto Z2 .

Definition 1 Let us call ‘Ilgl(n)—primitive tezture (or p-
primitive) functions z(n), which have a constant non-zero
value for n that belong to the full sphere with center in the

origin of Z* and ‘Ilz(,{l(n)—diameters less or equal to p~* :

_ J A=const, if \Ilg,]l (n) <p Y
z(n) = { 0, otherwise.

Remark 2 Independently of § and v, p-primitives are in-
variant with respect to action of any operator of linear isom-
etry considered in Proposition 2.

Examples of images composed from some \I/éj 1—primitives
for different p, 6 and  are shown in Figs.la-1b.

(a) (b)
Figure 1: Examples of images composed from several
p-adic primitives.

Examples of textures obtained from images in Figs. la-
1b by using some distorting operator (namely, gaussian blur
and additive noise) are shown in Figs. 2a-2b. Fig. 3 shows
typical Brodatz textures [16].

Figure 2: Synthesized textures.
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Similarity of the synthesized and Brodatz textures allows
to expect that methods of primitives extraction from synthe-
sized textures associated with \111(73 l—isometries will be also
working well for ”real” (Brodatz) textures.

In contrast with a real texture, primitive textures have a
formalized description and are easier to analyze.
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Figure 3: Brodatz textures.

We shall note one important spectral property of \Iléj 1—
primitives.

Proposition 3 Let w = exp{%}, p be a prime,

Qr={n=(m,n2): 0<n,me<p" —1<N}CQ.

Let z(n) be a \Ill(,{i—p’rimitive tezture; &(m) be DF'T- spec-
trum:

#(m)= 3" 2(n) exp{%(mlnﬁmgng)}, meQ,. (5)

ne,

Then £(m) can be non-zero only under the conditions

my,ma =0 (mod prfl)
for the norm ‘Ijgt)ﬁ

m1,m2 =0 (mod p" 1), ma —ym1 = 0 (mod p")
for the norm \Il§,22,

(6)

Congruencies (6) define \II:E,] )-neighborhoods of the zero
with the diameters less than or equal to p~"*'. Therefore,
taking into account the Parseval equality, we can conclude
that the spectrum power is localized inside the neighbor-
hood of the zero with a little \Ill(,{l—diameter'. In case of a
real texture image, this localization is obviously not so no-
ticeable. But by choosing a ”good” norm, the main part of
the spectrum power is concentrated around the zero.

2.3 Extraction of the \Ilg,)k—primitive Components
from Real Textures

Let B be a subset of primes, M, be a subset of norms \I/:E,] )

for p € P . Let an image (a texture) z(n) be presented in

the form:

1‘(1’1) = ZTinv (n) + mnon(n)y (7)
where z;,,,(n) is a function (”signal”) which is invariant over

\Iléj )-isometries for p € M. We shall interpret the function
Znon(n) as a "noise”.

Let Is(91,) be a subset of \Ilgl-isometries (4) for My,
Card(Is(M,)) be its cardinality. We shall consider an ac-

tion of the averaging operator M, on an image (7):

M,z(n) = Card(Is(%,) ™" Y 2(J(n)). (8)

Jels(My)

Taking into account the quite general assumptions about
statistical independence of values of the function z,.n(n),
the signal/noise ratio for the averaged image is larger than
for the image Znon(n). Certainly, accurate numerical esti-
mations can be obtained only for the artificially synthesized
images. For real textures the correctness of this assumption
can be confirmed experimentally.

Let us choose a class 91 = UM, (p € PB) of norms \Ilz(fl

that is representative enough. For each p and \Il;] ) we shall

define a finite set of isometries, and consider averaged im-
ages Mpz(n). After the thresholding and the binarization,
we shall receive a set of primitive textures. These primi-
tive textures and/or their numerical characteristics can be
considered as features of real textures, and the convenient
pattern recognition methods can be applied.

Really, invariant properties of a real texture with respect
to \II:E,] ) —isometries are unknown a priori, however, ”prime
numbers play games of chance”, don’t they?

3 ALGORITHM OF PRIMITIVE TEX-
TURES EXTRACTION

Step 1. Let (N x N) be the size of the image z(n) =
z(n1,n2) being processed. We shall choose a subset P of
prime numbers p, and consider a set of norms

n= )9, N, ={w}.
PEP

Step 2. For each p € P we shall calculate DFT of the
image of size N, X Np, where N, = p" < N.

Step 3. Let J be some operator of isometry (4),
detJ =1 and £;(m) be the DFT-spectrum of signal z(Jn),
<n,m >=nimi + nema.

Then J induces the dual operator J* acting on pairs of
indexes of the spectral components (5):

2s(m) = Z z(Jn) exp{% <Jn,m >}
JIJneQ,

Z z(n) eXp{@ <n,J'm >} = 2(J"m),
p’r
ne,

where operator J* is dual to J. Then J induces the dual
operator J* acting on pairs of indexes of the spectral com-

ponents (5). So a linear \Iléj )-isometry of an image induces
the linear spectra transform. Therefore, under each p € P

and \I/:E,] ) e M, we shall find averaged spectra

M,i#(m) = Card(Is(W,)) ™" Y 2(I"(m)).  (9)
JeIs(M)

For the chosen ¢ we shall find a set PBo C P of "good”
prime numbers subject to the condition:

pEPo = =0y cM,: > [ Mpi(m) P<e.

W(m)>pl-"

(10)
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Step 4. For all the primes p € PBo and for ¥ € N, we
shall define functions

X M,#(m), if T(m) <p "t (11)
0, if ¥(m) >p~ ",

and calculate inverse DFT g,(m) — y,(n) and binariza-
tion:

1, if nj| = ¢
yp(n) — Yp(n) = { 0, o‘t?ﬁe(rw)i'se,

where ¢ is a chosen threshold.

We consider the set of images Yp(n) as distorted primi-

tive textures (”\Iléj )-components of a real texture”) associ-

ated with ”good” norms \IIZ(,J ) under the condition (10). The
obtained images can be used for visual qualitative analysis
of the significant components of the given texture. Fig. 4
shows the original test texture as well as primitives extracted
for ”good” primes.

(b) o

Figure 4: (a) Fragment of synthesized texture.

(b)-(c) Two extracted primitive (resonant components).

4 EXPERIMENTAL RESULTS

4.1 Statistical Properties of p-adic Primitives

The most obvious characteristic which distincts significantly
resonance and non-resonance cases is a histogram of texture.
Fig. 5 shows an example of synthesized texture.

(b)

()

Figure 5: (a) Typical histogram of texture.
(b) Histogram of the averaged image (resonant case:

p=13).
(c) Histogram of the averaged image (non-resonant case:
p=17).

One can see that histogram on Fig. 5c are similar to
Gaussian distributions. Histogram on Fig. 5b is trimodal
that indicates that a primitive exists.
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4.2 Primitives Extraction

Figs. 6a-6¢ shows fragments of primitives extracted with the
described method from Brodatz texture. The average in (8)
for primes p = 2, ..., 29 was calculated under

Card(Is(‘ﬁp)) =15.

We shall note peculiarities of the realization of the pro-
posed method. In [17] an algorithm of 2-D DFT ("DFT with
a multicovering”) is described. Its structure is obviously as-
sociated with a covering of summation area with neighbor-
hoods of decreasing \I/:E,Q,.)Y-diameters for all v at once. This
allows to find the set while calculating the DFT.

(b) Averaged image. (¢) Extracted primitive.

Figure 6: Primitives extraction from Brodatz texture.

4.3 Texture Segmentation

Let us take an image which consists of several different tex-
tures, and separate them applying the proposed method. We
shall extract primitives using the sliding window method.
Several parallel branches of the algorithm will correspond to
several prime numbers, the vector of features will consist of
numerical characteristics obtained for every prime number.

Fig. 7a-Tb show results of separating the features space
into two classes.

(a) Original texture.

(b) Segmetation result.

Figure 7: Results of separation the features space into
two classes.

In this example we considered local mean value and local
empirical coefficient of correlation to be features.
4.4 Detection of Structural Defects

Fig. 8a-8d show results of detecting borders of texture de-
fects on the base of estimating modular moments

p= 3

(n1,m2)€Qp

ninjx(n1,n2) (mod Q), Q = p”

of 1st and 2nd order.

(b)

Synthesized texture, p = 13.

v

+

pu =
|

o
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s

Brodatz texture, p = 11.

Figure 8: Results of detecting borders of texture defects.

5 CONCLUSION

So the proposed method of p-adic resonance is a subsequent
realization of the following closely interrelated ideas.

1. If an image is invariant over some group G of all trans-
forms of the (discrete) plane, the relation (8) gives an image
that coincides with the original image.

2. If z(n) is represented as a sum of G-invariant signal
and non-invariant component (see (7)), the signal-noise ratio
for (8) is higher than for z(n).

3. Since it is very difficult to describe the group G of
all transforms for the real image z(n), we extract from z(n)
components invariant over well-known groups with the sim-
ple structures. These components and/or their numerical
characteristics are considered to be features of the image
z(n), and the standard methods of pattern recognition can
be applied.

4. The metrics (2) and (3) are extensions of p-adic metric
of the field Q, onto Z> . We consider group G to be a group
of p-adic isometries whith matrices (4).

5. Applying the transform (8) to the image for some set of
primes p followed by thresholding enables either to extract
a "hidden” p-adic invariant component for the given p, or to
state that it is not present. The binary vector for the speci-
fied set of primes can be presented to experts for identifying
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the texture. More accurate analysis can be performed using
numerical characteristics (features) obtained.

In author’s opinion, the capabilities of the ”resonance”
approach described in the paper are not limited to the ap-
plications considered above. In particular, in [18] the au-
thor used similar approach to the visual extraction of binary
primitives with predetermined geometric configuration (e.g.
with local-symmertic properties).
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