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Abstract 

Implicit surfaces defined by density functions are often chosen to 
model different kind of objects with property of soft blending. In 
spite of their qualities, the use of such primitives is not really 
intuitive. That is why we present in this paper a new description 
of implicit primitives to skin a set of skeletons made of different 
kind of basic elements. The user defines the set of skeletons and 
the way he want to skin them, so the implicit objects are created 
automatically. 
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1. INTRODUCTION 

Needs of computers graphics have involved the use of different 
descriptions of objects. An interesting model is based on implicit 
surfaces which bring solutions to the drawbacks given by the use 
of parametric or polyhedral surface representation: in fact for 
these two representations fusion or blending between objects are 
not easy to define [1]. So implicit surfaces seems to be a good 
model to represent different kind of objects.  

The choice of skinned skeletons with implicit surfaces is driving 
by the need of soft blending between several objects. However 
implicit surfaces are a well studied model, researches are 
currently very active [2]. Methods allow creating complex shapes 
without skeletons [3], [4]. In our case we have built our model 
upon the implicit surfaces based on density functions and 
skeleton.  

An implicit surface is defined by the set of points M of space 
which density Fi is equal to a threshold T : 
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Since this first inverse exponential density function [5] others 
have been studied [6],  [7], [8]. An interesting property of this 
model is to allow a simple formulation of blending between 
several implicit objects. The resulting equipotential function F is 
defined by the sum of the density functions of the n blobs : 
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We use here the sum of each contribution in space. This can be 
generalised easily with other kind of operations, which can be 
found in the constructive solid geometric models [9] [10]. 

In our model the density function Fi is defined as the composition 

of two functions: a potential function ℜ→ℜ+:if  and a distance 

function +ℜ→ℜ3:d , normalised by the radius of influence Ri : 
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The distance function d creates the shape around the skeleton Ski 
of the object while the function fi manages the stiffness of the 
fusion between an object and its neighbours. 

A skeleton Ski may be seen has the set of the centres of all 
maximal spheres included in an object [11]. For instance Blinn 
[5] has defined blob as an implicit object around a point 
skeleton. Therefore it is not easy to model complex shapes with 
several primitives without making bulges on the shape of the 
object (see Figure 1). So we are using different kinds of skeleton 
in 3D : point, segment, curve, plane surface, curved surface or 
any combination of these basic objects. The skinning of such 
skeletons depends on the distance computation of every point to 
the skeleton. Distance computation to a complex skeleton is not 
as easy as to point skeletons. Moreover distance function may be 
anisotropic to increase the set of objects to build. 

 

Figure 1 : Bulges on the shape after fusion of 3 blobs. 

 

In this paper we discuss the problems set by the use of implicit 
surfaces based on skeletons. We will present different kinds of 
solutions like implicit generalised cylinders, extrusion or the use 
of complex skeletons. Then we suggest solutions for the use of 
parametric curves and surfaces as skeletons for implicit surfaces. 
Moreover our formulation will allow us to create anisotropic 
implicit surfaces. 

2. PREVIOUS WORK 

Several works have been done to use implicit surfaces in a 
modelisation process. Methods using convolution of an implicit 
function on a kernel (the object's skeleton) [12] are not affected 
by the bulges' problem but are not really intuitive to use and are 
expensive in time computing. Grimm [13] uses the notion of 
profile curve but the expression of blending in her model is not 
quite simple.  

Another way is to modify the distance function to obtain more 
complex objects [8]. The density depends on the localisation 
around the skeleton. Only star shaped objects may be produced. 
This method has been generalised in [14]. Profile curves are 
defined to translate, rotate and sweep the implicit basic shapes. 
But it is very difficult to imagine object produced using a given 
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profile. Moreover implicit shapes defined in [14] are not general 
enough. For instance we do not find plane skeletons. 

In [15] the authors chose to use the notion of complex skeletons. 
They define an anisotropic function, which allows skinning all 
kinds of skeletons. Nevertheless the density function is still 
complex and the generalisation to parametric surfaces was not 
realised. We would like to perform this generalisation. That is 
why we will present in the following a study of skeletons with 
their skinning with anisotropic implicit surfaces. 

3. CURVE SKELETONS 

As seen previously the different kinds of shapes of skeletons are 
points, curves, and surfaces. With curves some problems arise 
[15] as distance computation, which is not as simple as distance 
between two points. Before studying curve skeletons we will 
introduce the problem with segment skeletons. 

3.1 Segment skeletons 
Distance from a point P(x,y,z) to a parametric segment skeleton 
is computed using its orthogonal projection Q on the segment. 

Then the norm of the vector PQ  gives the minimal distance 

from the point to the skeleton. So we obtain an implicit tube 
without bulges on its shape but whose extremities are half 
spheres (see Figure 2). 

 
Figure 2 : Implicit surface on segment skeleton. 

 

Therefore if the artist using this tool wants to represent an 
implicit cone or for instance the tail of a mouse this model is not 
compliant enough. So to enlarge the set of shapes which can be 
represented with implicit surfaces we have to extend our model 
to parametric curves in a way to use them as skeletons of 
anisotropic implicit surfaces. 

3.2 Creation of anisotropic implicit 
surfaces on segment skeletons 
The goal is to manage the density in space to obtain different 
kind of shapes. In fact the designer would like to represent an 
implicit cone or a snake for instance. For this objects the distance 
from the skeleton to the boundary of the surface is not constant. 
Current models [14], [8] could be used for this work. But these 
models are not based on complex skeletons. They use anisotropic 
distances from a point skeleton and create anisotropic shapes 
depending on angles around the point. In our model we have 
chosen to modify the distance function. So we use the Euclidean 
distance no longer but an anisotropic one. The resulting density 
function becomes : 
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The deformation function def(M,Ski) depends on the parameter t 
of the orthogonal projection on the segment. As we can see on 
Figure 3.b the shape of the object is modified from its original 

shape (Figure 2) by using a normalised squared cosine function 
on the parameter of the segment (see Figure 3.a). 

Another kind of cylinder can be obtained using this method such 
cylindrical implicit shape with flat extremities (see Figure 4). 
We can also notice that the new definition of these objects still 
allows blending between those (Figure 5). 

 

 
 

Figure 3.a and 3.b : The deformation function and the 
anisotropic implicit surface on a segment skeleton. 

 

 
 

Figure 4 : Anisotropic implicit cylinder and its deformation 
function. 

 

3.3 Parametric curves as skeletons 
To build a more complex shape like a curve for instance the first 
idea is to use more than one skinned segment skeleton. But the 
modelling of a curve whose skeleton is composed of segments 
will give place to an object with sudden changes of continuity in 
the shape. This problem is solved by the skinning of curve 
skeletons. 

 

Figure 5 : Fusion between a skinned segment skeleton and a 
point skeleton. 

 

The main problem to be solved is to compute the distance from 
the skeleton to the point of space where we want to evaluate the 
density. In our model we have used Bezier curves [16] as 
skeletons but the computation of the distance can be extended to 
another parametric curves. 

To compute the distance from a point P(x,y,z) to the curve, we 
have to search for the orthogonal projection Q(t) of P on the 
curve. This orthogonal projection satisfies the equation : 
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Figure 6 : Orthogonal projection on parametric curve. 
 

The distance used to evaluate the density function is the norm of 

the vector PQ . The orthogonal projection gives us the t 
parameter too. If a point has more than one orthogonal projection 
on the curve (as illustrated in Figure 7) we obtain a set of values 
for the parameter t. We choose t corresponding to the minimal 
distance. A problem remains if many distances are equal for 
several values of the parameter t. We cannot automatically 
choose the correct value of t. The user has to specify what he 
wants himself. 

 

Figure 7 : The non-unicity problem for orthogonal projection. 
 

Several numerical methods have been studied to find the 
solutions of the distance computation problem [17] but 
convergence is not always guaranteed. Furthermore these 
methods cannot find all the roots of the problem and are 
generally expensive. So we have chosen to use an analytical 
solution halfway between those. 

3.4 The computation of the distance 
Let C(t) a parametric curve : 
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As seen previously the orthogonal projections of a point P(x,y,z) 
on a curve C(t) are given by solving the following equation : 
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Using the previous notations solutions are given by solving : 
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t is found computing the roots of this equation. To extract roots 
of a polynomial expression of degree unspecified its interval of 
values is split recursively into sub-intervals until the function is 

monotonous. Then we can find the intervals of the roots of the 
first expression using the latest roots backward. If the interval is 
bounded we find the root using a dichotomy method else we find 
a bounded interval in which the root will be and use the 
dichotomy. We can see a Bezier skeleton and its skin as an 
implicit surface in Figure 8.a and 8.b. 

 

 
 

Figure 8.a and 8.b : Skinning of a curve skeleton. 

 

3.5 Curve skeletons for anisotropic 
distance function 
As for segment skeletons we can use anisotropic implicit surfaces 
to skin curve skeletons. We apply a deformation function, which 
depends on the parameter t of the orthogonal projection of the 
point P on the curve. This function takes its values on the 
definition set of t, often [0,1]. As we can see on Figures 9 the 
distance function may be as different as wanted to extend the 
number of feasible shapes. Furthermore the use of anisotropic 
distances does not alter the fusion between different objects as 
seen in Figure 10. 

  

Figure 9 : Anisotropic implicit surfaces on Bezier curves. 

 

Figure 10 : Fusion between two anisotropic implicit surfaces 
around Bezier curves. 

4. EXTENSION TO PARAMETRIC 
SURFACES 

Skinning parametric surfaces follows the same method than 
parametric curves. The main difficulty is to evaluate the distance 
from the surface to a point of space. In fact the distance from a 
point P to a parametric surface S(u,v) is computed solving: 
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However this equation is quite simple to write, its solution needs 
to solve a high degree equation with two unknown factors that 
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increase the computation cost. Another way is solving the system 
of equations : 
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This system means that scalar product of derivatives in u and v 
and the vector from the considerate point in space to its 
orthogonal projection on the surface are equal to zero.  

But this method does not simplify the computation of the 
distance since we have to solve a non-linear system of two 
equations. Johnson and Cohen [18] have shown that these 
analytical methods for surfaces do not always converge and are 
very expensive. There is a lot of other methods to compute this 
distance for instance Newton's method [17]. But these methods 
are specific to a particular kind of surface and do not find all the 
orthogonal projections on the surface. So as we can have more 
than one orthogonal projection on the surface (Figure 11) we 
have to find another computation of the distance. 

 

Figure 11 : More than one projection for the point P. 
 

So we have chosen to use an approximation of the parametric 
surface by a succession of patches. Thus to compute the distance 
from a point to the surface we have just to evaluate the distances 
to the set of patches and to keep the minimal. 

4.1 Solution for the distance 
computation 
As say previously we subdivide the surface into a large number 
of patches, which approximate the surface as good as possible. 
The first idea is to regularly divide the surface into a determinate 
number of patches without taking its curvature into account. 
Unfortunately this regular subdivision may divide some plane 
parts of the surface. Then we subdivide the surface according to 
its local curvature that allows a better representation of the 
surface with a lower number of patches. That is illustrated in 
Figure 12 and 13. 

 

Figure 12 : Surface subdivision at depth 4. 

 

Figure 13 : Surface subdivision at depth 6. 

 

A good way to estimate the curvature of a parametric patch is to 
evaluate the linearity on its sides. So we check the co-linearity of 
the derivatives in u and v on the sides of the patch (see Figure 
14). 

 
Figure 14 : Subdivision of the surface. 

 

We compute those on the four sides of the patch. If the angle 
between the derivatives on the same parameter (u or v) computed 
on the two vertices of the same edge of the patch is greater than 
an epsilon value then we subdivide the patch in four sub-patches 
and iterate the process on the four. The process stops if each 
patch is as plane as needed or if the maximal depth is reached. 
More the depth is high, better the approximation of the surface 
is. This model allows us to have the best representation of the 
surface with the cheaper computing cost. Moreover in a 
modelisation way the designer can deliberately decrease the 
maximal depth to have a quick preview of his realisation. Finally 
he will increase the depth to obtain the final result. 

 When the surface is subdivided, we can easily compute the 
distance from a point to each patch and then keep the minimal to 
compute the density function of the implicit surface. See Figures 
15 and 16 for example of implicit surfaces skinning parametric 
surfaces. 

 

Figure 15 : Skinning a parametric surface using Murakami's 
function [6]. 

 

Figure 16 : Fusion of a blob, a skinned curve and a skinned 
surface. 
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4.2 Extension to any parametric surfaces 
: the superquadric example 
Every kind of parametric surface can be used as skeleton for 
implicit objects. For instance, we can cover superquadric 
surfaces. These kinds of surfaces have been described in Barr 
[19]. 

The subdivision method described above can be used. In Figure 
17 we can see two steps of the fusion of a blob and a skinned 
superquadric skeleton. 

  

Figure 17 : Fusion between a skinned superquadric surface 
skeleton and a blob. 

 

4.3 Use of surfaces as skeleton of 
anisotropic implicit surfaces 
In a same way as curve skeletons, we can use the two parameters 
u and v of the surface to change the density value. In this case the 
deformation function of the distance takes its values on the set of 
definition of the parameters u, v of the parametric surface that is 
to say [0,1]x[0,1]. For instance we can see in Figure 18 a 
deformation function (cos(u)) applied on a plane. 

 

Figure 18 : Anisotropic implicit surface using a cosine 
deformation function. 

5. CONCLUSION AND PERSPECTIVES 

In this paper we have presented a method to skin all kinds of 
skeletons. The shape of the final object is represented using 
implicit surfaces that allow a soft blending between several 
primitives of the object. Moreover our model can be used to skin 
skeletons with anisotropic implicit surfaces. In this case the 
shape which skinning the skeleton is given by one or two 
functions (depending on the dimension of the skeleton). We have 
also presented distance computation methods, which decrease the 
cost of computing with a better approximation of the shape in the 
curved regions. Some works remain in the following of this 
study. For instance we could use another distance computation to 
generate new kinds of shapes. 
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